
Student(s) Faculty Member(s)

• Finding a shortest synchronizing sequence is an NP-Hard problem (Eppstein, 1990).

There are heuristics (Eppstein, 1990; Roman and Szykula, 2015) to find a short

synchronizing sequence.

• Some heuristics work fast but produce longer synchronizing sequences and some

work slow but produce shorter synchronizing sequences.

• We propose a method for using these heuristics taking into account the

connectedness of automata to make the heuristics work faster than their original

versions, without sacrificing the quality of the synchronizing sequences.

ABSTRACT

PROJECT DETAILS

PROJECT DETAILS II

Synchronizing Heuristics for Non-Strongly Connected Automata

Berk Çirişci
Kerem M. Kahraman
Çağrı Uluç Yıldırımoğlu

Hüsnü Yenigün
Kamer Kaya

•A complete automaton A=(S, Σ, S×Σ, δ) can be decomposed into a set of SCCs

{A1, A2, …, Ak}, where Ai=(Si, Σ, Di, δi), for 1 ≤ i ≤ k, such that for all 1 ≤ i < j ≤ k,

Si ∩ Sj = , and S1 ∪ S2 ∪ … ∪ Sk = S.

•An SCC Ai=(Si, Σ, Di, δi) is called a sink component if Di = Si×Σ. In other words, for a

sink component all the transitions of the states in Si in A are preserved in Ai.

• Let A=(S, Σ, S×Σ, δ) be an automaton and {A1, A2, …, Ak} be the SCCs of A. We

consider the SCCs of A sorted as 〈A1, A2, …, Ak〉 such that for any 1 ≤ i < j ≤ k, there do

not exist si ∈ Si, sj ∈ Sj, w ∈ Σ* where δ(sj, w) = si.

Theorem: Let A=(S, Σ, S×Σ, δ) be a complete automaton and 〈A1, A2, …, Ak〉 be the

sorted SCCs of A, where Ai=(Si, Σ, Di, δi). For 1 ≤ i < k, let A'i be the completion of Ai.

S'k = Sk ∩ δ(S, σk-1) and αk is a S'k-synchronizing sequence for Ak. Then σk-1αk is a

synchronizing sequence for A.

•A deterministic automaton is defined by a tuple A = (S, Σ, D, δ) where

• S is a finite set of n states,

• Σ is a finite alphabet consisting of p input letters.

• D S × Σ is called the domain

• δ : D → S is a transition function.

• When D = S × Σ, then A is called complete, otherwise A is called partial.

•A synchronizing sequence w for an automaton A is a sequence of inputs such that

without knowing the current state of A, when w applied to automaton A, A will have a

final particular active state at the end (Eppstein, 1990).

•An automaton A is called strongly connected if every state is reachable from every

other state by using a sequence of inputs. Otherwise, A is called as non-strongly

connected.

• When an automaton is non-strongly connected, it can be represented as a group of

strongly connected automata, called strongly connected components (SCCs).

• Given a non-strongly connected automaton A, we suggest a method to build a

synchronizing sequence for A by using the synchronizing sequences of the SCCs of A.

OBJECTIVES
Using synchronizing heuristics with our method to make the heuristics work faster than

their original versions, without sacrificing the quality of the synchronizing sequences.

REFERENCES

Altun, O. F., Atam, K.T., Karahoda, S., Kamer, K., 2017. Synchronizing Heuristics: Speeding Up The

Slowest. In: IFIP International Conference on Testing Software and Systems. Lecture Notes in

Computer Science 10533, Springer International Publishing

Eppstein, D., 1990. Reset sequences for monotonic automata. SIAM J. Comput. 19 (3), 500 - 510.

Karahoda, S., Erenay, O. T., Kaya, K., Türker, U. C., Yenigün, H., 2016. Parallelizing heuristics for

generating synchronizing sequences. In: IFIP International Conference on Testing Software and

Systems. Springer International Publishing, pp. 106 -122.

Karahoda, S., Kamer, K., Yenigün, H., 2017. Synchronizing Heuristics: Speeding Up The Fastest

(under review)

Kudlacik, R., Roman, A., Wagner, H., 2012. Effective synchronizing algorithms. Expert Systems with

Applications 39 (14), 11746-11757.

Roman, A., Szykula, M., 2015. Forward and backward synchronizing algorithms. Expert Systems with

Applications 42 (24), 9512-9527.

Trahtman, A. N., 2004. Some results of implemented algorithms of synchronization. In: 10th Journees

Montoises d'Inform.

CONCLUSIONS

• Our method can be used with any synchronizing heuristic to make it work faster on

non-strongly connected automata.

• The improvement in the speed increases as the number of SCCs increases.

• In case of Greedy, our method can find shorter synchronizing sequences in shorter

time compared to the application of Greedy directly to automata.

• SynchroP finds shorter synchronizing sequences compared to Greedy but it takes

more time. With our method, we can use SynchroP to find shorter synchronizing

sequences than Greedy in a shorter time than Greedy as the number of SCCs increase.

• Greedy requires O(n3) and SynchroP requires O(n5) time, where n is the number of

states.

• If there are k strongly connected components with equal sizes, the complexity of

Greedy and SynchroP applied with our method becomes O(k(n/k)3), O(k(n/k)5)

respectively.

PURE

0

200

400

600

800

1000

1200

1400

1600

1800

2 4 8

1024

512

256

y:Speedup for SynchroP x: SCC Count

Sink component

0

5

10

15

20

25

30

35

40

45

50

2 4 8 16

1024

2048

4096

8192

y:Speedup for SynchroP x: SCC Count

0

20

40

60

80

100

120

SCC

Greedy

y: Length x: States, SCC Count

0

5

10

15

20

25

30

35

40

45

1024.8 1024.4 1024.2 512.8 512.4 512.2 256.8 256.4 256.2

SCC

SynchroP

y: Length x: States, SCC Count

Synchronizing sequence: aba abbabb b <SCC1, SCC2, SCC3>

