Nanofiber/Natural Clay Nanocomposites via Green Electrospinning

Batur Gültekin & Yasemin Utkueri Advisor: Serap Hayat Soytaş, PhD

Abstract

- > Optimization of "waterborne polyurethane" (WBPU) and "halloysite nanotubes (HNT)" composite solution.
- > Loading an antibacterial agent into HNT
- > Electrospinning polymer nanofiber/polymer + HNT nanofibers
- > Characterization

Purpose of Project

- > To investigate HNT/WBPU composite nanofiber
- > To investigate antibacterial properties of C-HNT/WBPU composite nanofibers

Introduction

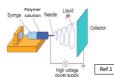
> Waterborne Polyurethane (WBPU)

- Water-based polyurethane dispersion
- Ecofriendly, no organic solvents
- Economical and safer than conventional polyurethanes
- Similar properties to solvent-based counterparts
- Since it is a dispersion, it requires a carrier polymer for electrospinning

➤ Poly(vinyl alcohol) (PVA)

Water soluble, biocompatible polymer

➤ Electrospinning

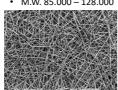

- · Powerful tool to produce ultra-thin fibers from a wide range of polymeric materials.
- Electrospun nanofibers with very large surface area to volume ratio, flexibility and superior mechanical performance

> Halloysite Nanotube (HNT)

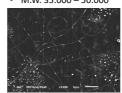
- Natural clay with high mechanical strength, thermal stability, biocompatibility and abundance
- Tubular microstructure provides good drug encapsulation and sustained release ability

Methods

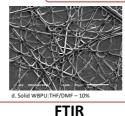
- Purification of HNT
- Carvacrol loading into HNT
- Solution preparation PVA/WBPU and PVA/WBU/HNT
- Electrospinning

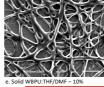


- Characterization via
 - Scanning Electron Microscopy (SEM)
 - Energy-dispersive X-ray Spectroscopy (EDX)
 - Thermogravimetric Analysis (TGA)
 - Fourier Transform Infrared Spectrophotometer (FTIR)
- Bio test via
 - Viability Assay


Optimization of Electrospun of WBPU/ PVA/HNT Composite Solution

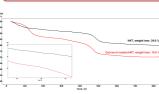
Higher / Lower M.W.


- WBPU:PVA 7/3
- M.W. 85.000 128.000

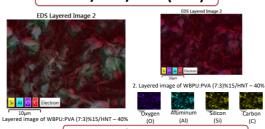


WBPU:PVA 7/3 M.W. 35.000 - 50.000

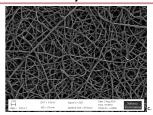
Solid WBPU/THF/DMF



HNT

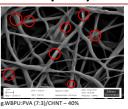


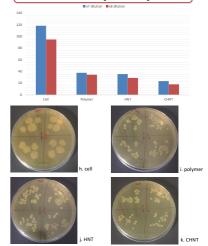
HNT Loading (TGA)


WBPU/PVA/HNT (EDX)

Summary

- ➤ WBPU/PVA solution conditions were optimized
 - Best fiber quality: 15% and 17% WBPU/PVA with high MW (7/3)
- > 1 % to 40 % HNT were successfully incorporated into WBPU/PVA nanofibers
- > HNT's were loaded with carvacrol (ABA) and incorporated into WBPU/PVA nanofibers
- > Bio tests were executed and the antibacterial effect was noticed


WBPU:PVA 7/3 H.M.W. %17


WBPU:PVA 7/3 H.M.W. %17 - CHNT %40

WBPU/PVA/HNT

Viability Assay

Future Works

- Mechanical properties of the designed nanofibers will be analyzed
- > Antibacterial agent release profiles will be investigated further
- > Controlled release properties will be investigated

References

Park, J-S. (2011). Electrospinning and Its Applications. Advances in Natural Sciences: Nanoscience and Nanotechnology,

Acknowledgements