
Student(s) Faculty Member(s)

In multi-agent path finding (MAPF), multiple agents need to find paths
from their respective locations to their goal locations, ensuring that the
paths do not collide with

• obstacles or
• other moving agents.

This problem is important for many applications, such as
• computer games,

• environmental monitoring,
• patrolling,

• multi-robot planning, etc.
This project involves studying MAPF in a dynamic environment, using
graph theory and AI methods.

ABSTRACT

DETAILS

Compensator Design: Detection of ArUco Markers

Dynamic Multi-Agent Pathfinding

Deren Ege Turan Emre Hilmi Songur
Farukhzhon Barotov M. Sami Yavuz
Aysu Bogatarkan Batuhan Yıldırım
Cem Yüksel

Esra Erdem
Volkan Patoğlu

• This figure is a bird’s-eye-view representation of a global positioning
camera (a webcam in our case), which gives the output of each label’s
coordinates as a vector Vn = [xn, yn, zn, thetan] when prompted by
“solvepnp” function. As an open-source computer vision library, OpenCV
and detection of ArUco markers have supplied us these coordinate
outputs at around 80 ms per detection.

• First, we have placed the markers in the middle of a grid and detected its
mid-point coordinate represented by a red dot in the figure above. Then,
the collection of these coordinates have supplied us a concrete map of our
entire area grid by grid. The midpoint of each grid have been shown by
the grey dots above.

• From this point on, all we had to do was a substraction between x1, y1,
theta1 of say the first grid and x, y, theta coordinates of the first markes
which is very close to the midpoint of the first grid. We intented to
substract this error from the input signal of the next step, hence, the next
step movement will be for both taking the planned step and compensating
the x, y, theta errors done in the previous time step.

During the project, we solved different versions of multi-agent path
finding (MAPF) problem using answer set programming (ASP) and its
solver Clingo. 1-Finding a path starting from an initial point to a goal
point in a graph G = (V, E), an initial vertex s in V, a goal vertex g in V as
inputs. 2- Finding a path starting from an initial point to a goal point in a
directed graph G = (V, E), an initial vertex s in V, a goal vertex g in V, and
a set W of waypoints as inputs. 3- In this step, the aim is to find plans for
k robots, k is the number of robots. Now the environment is viewed as a
special sort of graph: a grid of size n*m, and each robot has a delivery
task to complete within u time steps. Inputs are given as: an initial
location, a goal 3 location, set of waypoints and an upper bound on u on
the plan length. The plan length should be at most u, such that no two
robots collide with each other, no two robots can be at the same location at
the same time, no two robots can swap their locations along the same
edge. This problem is called the Multi-Agent Path Finding (MAPF)
problem with waypoints.

OBJECTIVES

Pathfinding for a single agent is the problem of planning a route from an
initial location to a target location in an environment, going around
obstacles. Pathfinding for multiple agents (PF) also aims to plan such
routes for each agent, but subject to various constraints, such as no self-
intersecting paths, no intersection of paths/plans, no crossing/meeting
each other, no waiting idle, restrictions on the length of each path/plan and
on the total length of paths/plans, and requirements on visiting multiple
target locations/waypoints (Erdem et al., 2013).

Besides, we were supposed to design a compansetor that works on a
globally-positioned camera by image recognition which is expected to
compensate the loss from slippage on the next time step. Since the
positioning system runs in real-time, we had to resolve the issue of
running Simulink in external mode connected to the EV3 devices by
TCP/IP wi-fi module with a wi-fi dongle.

REFERENCES
[1] ArucoCode - Google Drive. (n.d.). Retrieved from
https://drive.google.com/drive/folders/0B1JICqP8TvqWVkJYeWFMeE9iX00

[2] Agent Pathfinding | www.picswe.com. (n.d.). Retrieved from
https://www.picswe.com/pics/agent-pathfinding-0b.html

[3] Create and detect aruco markers. (2017, April 12). Retrieved from
https://www.youtube.com/watch?v=y1GF2yscOoc

[4] lego rebot with EV3DEV don't show its ip address on the Screen. · Issue #967 ·
ev3dev/ev3dev. (n.d.). Retrieved from https://github.com/ev3dev/ev3dev/issues/967

[5] OpenCV: Detection of ArUco Markers. (n.d.). Retrieved from
https://docs.opencv.org/3.1.0/d5/dae/tutorial_aruco_detection.html

CONCLUSIONS
Single-agent path-finding and general form of multi-agent path-finding
(MAPF) problem was solved in ASP with different approaches and each in
terms of their running time efficiency was compared with sample algorithm
presented in the paper (Erdem et al. 2013). A simple way to solve dynamic
version of MAPF is to recompute solution for MAPF each time change in
the environment occurs. Although, this will give a working solution, it
requires too much computation power and processing time when there are
many agents present in the environment.

We are still trying to come up with more efficient algorithms to solve the
main problem and resolving the issues regarding Simulink integration.

Figure 1: Pathfinding scheme with agents,
obstacles and grids.

Figure 2: The omnidirectional LEGO robot’s
bird’s-eye-view photograph.

Figure 3: A bird’s-eye-view representation of a global positioning camera.

Figures 4 and 5: Detection of ArUco Markers using OpenCV.

