
Student(s) Faculty Member(s)

Data sketches are probabilistic data structures with mathematically proven 

error bounds that store information about the datasets using small amount of 

space using hash functions. They can approximate some predefined 

questions (i.e. cardinality or frequency estimation) about big data with high 

accuracy. 

We chose a data sketch called HyperLogLog and tested it with many 

different configurations in order to find results that show least errors 

possible when estimating unique elements in large genomic datasets.

ABSTRACT

K-MER 64 RESULTS

K-MER 32 RESULTS

SKETCHES ON SINGLE BOARD COMPUTERS

Ali Osman Berk Şapcı
Egemen Ertuğrul
Hakan Ogan Alpar

Kamer Kaya

As seen on the graphs, HyperLogLog performs better as the K-mer sizes are 

increased regardless of the hash functions. We think that this is caused by 

the fact that lengthier K-mer sizes result in larger quantities of distinct 

elements and HyperLogLog performs better estimating with larger quantities 

of distinct elements.  The same pattern of improvement can be seen with the 

bits taken for the buckets, again a parameter of HyperLogLog. Yet this  

improvement peaks at 10 bits in this case.

The hash functions considered, the graphs show that when the distinct 

element size is smaller(K-mer length 32 leads to less distinct elements than 

64) Tabulation Hash returns the most accurate results, with larger distinct 

element sizes it still performs great but gets rivaled by City Hash.

We focus on HyperLogLog and its behavior with different hash functions 

when we review our results. Murmur Hash, Spooky Hash, City Hash and 

Tabulation Hash functions are subject to our experiments. Comparison of the 

accuracy of hash functions on the datasets were done with a tool called DSK 

that gives exact cardinality result. Other parameters subject to the 

experiments were the different datasets, different K-mer sizes such as 32, 40, 

48, 56, 64 and different bucket bits (a parameter of HyperLogLog) such as 6, 

8, 10, 12, 14. Results of these experiments were used to try and find a 

correlation between hash functions and the accuracy of the data sketch.

OBJECTIVES

• Implementing and learning more about data sketches; especially 

HyperLogLog

• Comparing hash functions to find most suitable ones for different queries 

on genomic data

• Investigating effects of k-mer size, data size, register size and hash 

functions on the estimation accuracy of data sketches

REFERENCES

• UCSC Genome Browser Downloads. (n.d.). Retrieved from http://hgdownload.cse.ucsc.edu

• Dahlgaard, S., Knudsen, M., & Thorup, M. (2017). Practical Hash Functions for Similarity 

Estimation and Dimensionality Reduction. In Advances in Neural Information Processing 

Systems (pp. 6615-6625).

• Mohamadi, H., Khan, H., & Birol, I. (2017). ntCard: a streaming algorithm for cardinality 

estimation in genomics data. Bioinformatics, 33(9), 1324-1330.

• Heule, S., Nunkesser, M., & Hall, A. (2013, March). HyperLogLog in practice: algorithmic 

engineering of a state of the art cardinality estimation algorithm. In Proceedings of the 16th 

International Conference on Extending Database Technology (pp. 683-692). ACM.

• google/cityhash. (2013, August 1). Retrieved from https://github.com/google/cityhash

• aappleby/smhasher. (n.d.). Retrieved from 

https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp

• SpookyHash: a 128-bit noncryptographic hash. (n.d.). Retrieved from 

http://burtleburtle.net/bob/hash/spooky.html

CONCLUSION

Findings so far suggest that HyperLogLog data sketch for K-mer counting 

gives more accurate results with bucket bits around 10 and a large distinct 

element size utilizing Tabulation and City Hashes, yet there are other 

conditions to consider. Right now, even though our implementation of 

HyperLogLog saves a lot of space, it runs sequentially, therefore it takes 

time to process the datasets; parallelization is needed to bring our model to 

more desirable speeds. Also in our estimation formula, there is a correction 

constant that differs for each bucket size which might need tweaking. Finally 

a file size of 1GB, like the ones we used, might seem large at first, when in 

bioinformatics, file sizes can go much larger. Tests need to be done on these 

types of data to have more accurate results to see which hash function 

performs the best for HyperLogLog sketch.

0

5

10

15

20

25

6 8 10 12 14

A
b

so
lu

te
 E

rr
o

r 
(%

)

Bucket Bits

Tabulation Hash

triCas2 aplCal1 droEre2

0

5

10

15

20

25

6 8 10 12 14

A
b

so
lu

te
 E

rr
o

r 
(%

)

Bucket Bits

Spooky Hash

triCas2 aplCal1 droEre2

0

5

10

15

20

25

30

6 8 10 12 14

A
b

so
lu

te
 E

rr
o

r 
(%

)

Bucket Bits

City Hash

triCas2 aplCal1 droEre2

0

5

10

15

20

25

6 8 10 12 14

A
b

so
lu

te
 E

rr
o

r 
(%

)

Bucket bits

Tabulation Hash

triCas2 aplCal1 droEre2 danRer

0

5

10

15

20

25

6 8 10 12 14

A
b

so
lu

te
 E

rr
o

r 
(%

)

Bucket Bits

Spooky Hash

triCas2 aplCal1 droEre2 danRer

0

5

10

15

20

25

30

35

40

45

50

6 8 10 12 14

A
b

so
lu

te
 E

rr
o

r 
(%

)

Bucket Bits

Murmur Hash

triCas2 aplCal1 droEre2

0

5

10

15

20

25

30

6 8 10 12 14

A
b

so
lu

te
 E

rr
o

r 
(%

)

Bucket bits

City Hash

triCas2 aplCal1 droEre2 danRer

0

2

4

6

8

10

12

14

16

18

20

6 8 10 12 14

A
b

so
lu

te
 E

rr
o

r 
(%

)

Bucket bits

Murmur Hash

triCas2 aplCal1 droEre2 danRer

http://hgdownload.cse.ucsc.edu/
https://github.com/google/cityhash
https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp
http://burtleburtle.net/bob/hash/spooky.html

