Protecting Kinship Privacy in Genomic Databases

Students

Faculty Member

Emre Hilmi Songur Farukhzhon Barotov Öznur Taştan

METHODOLOGY AND CALCULATIONS

We have a .gds file that contains a matrix of 262178 SNP positions belonging to 1412 people

	Individual 1	Individual 2	Individual 3	Individual n
SNP Position 1	1	0	1	2
SNP Position 2	2	1	1	0

What Makes You Rifferent?

- The human genome sequence is **99.6%** identical in all people.
- SNP (Single Nucleotide Polymorphism) is DNA sequence variation occuring when a single nucleotide differs between two or more genomes.
- SNPs make up **0.4%** of the genome.

What is KING Coefficient?

Relationship	Kinship Coefficient
Individual-self	1/2
Siblings	1/4
Parent-offspring	1/4
Grandparent-grandchild	1/8
Uncle/aunt-nephew/niece	1/8
First Cousins	1/16
Half-siblings	1/8

What is Kinship?

Genomic Data has:

$2n_{11} - 4(n_{02} + n_{20}) - n_{*1} + n_{1*}$
--

SNP Position 3	0	0	2	1
SNP Position 4	2	1	0	1
SNP Position 5	1	0	2	2
SNP Position 6	0	2	2	1
SNP Position m	1	0	0	0

And this is how we convert the organic bases into 0, 1, 2 whilst creating this .gds file:

SNP Position	Alleles in one Individual	Alleles in the Reference Genome	How Many of the Alleles
			Changeu:
788822	AG	AG	0
788822 788825	AG GC	AG CC	0 1

□ We focused on the correlation between the missing SNP position and all other SNP positions in the database.

Here, n_{11} is the number of genomic positions that are heterozygous in both individuals, n_{02} is the number of SNPs where the first individual (*i*) is homozygous dominant and the second individual (*j*) is homozygous recessive. n_{20} denotes the positions where *j* is homozygous dominant and *i* is homozygous recessive. n_{1*} and n_{*1} are the number of SNPs that are heterozygous for individual *i* and for individual *j*, respectively.

PURPOSE AND MOTIVATION

- > A researcher found out that he had a half-sibling from genomic database:
 - > «With genetic testing, I gave my parents the gift of divorce»
- The law enforcement recently tracked (and identified) the Golden State Killer
 - \succ (by using a relative's genomic data in a database)
- Real-life examples led us build a privacy-protection system for genomic databases.

We considered the result of the SNP position with the highest correlation coefficient. Max{0,1,2} has been taken and injected into the masked .vcf file of the individual.

$$r = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^n (x_i - ar{x})^2} \sqrt{\sum_{i=1}^n (y_i - ar{y})^2}}$$

CONCLUSION

Since we have the fully revealed file of the firstly added individual,

Since we unmasked the masked individual by the calculated values

We calculated KING before & after and compared, trying to see whether the kinship has been revealed.

- Ayday, E., & Humbert, M. (2017). Inference Attacks against Kin Genomic Privacy. *IEEE Security & Privacy*, 15(5), 29-37. doi:10.1109/msp.2017.3681052
- Kale, G., Ayday, E., & Tastan, O. (2017). A utility maximizing and privacy preserving approach for protecting kinship in genomic databases. *Bioinformatics*, *34*(2), 181-189. doi:10.1093/bioinformatics/btx568
- Lange, Kenneth (2003). Mathematical and statistical methods for genetic analysis. Springer. pp. 81–83
- Manichaikul, A., Mychaleckyj, J. C., Rich, S. S., Daly, K., Sale, M., & Chen, W. (2010). Robust relationship inference in genome-wide association studies. *Bioinformatics*, 26(22), 2867-2873. doi:10.1093/bioinformatics/btq559
- Naveed, M. et al. (2015) Privacy in the genomic era. ACM Comput. Surv., 48, 6.
- https://www.vox.com/2014/9/9/6107039/23andme-ancestry-dna-testing