
Student(s) Faculty Member(s)

Deep learning is typically used for pattern classification on static datasets, such as face recognition from streaming video,

based on prior experience. We are working on implementing deep learning methods in the framework of reinforcement

learning, applied to dynamic systems, such as robot manipulators.

In this project we applied algorithms to a physical two d.o.f. pantograph in the lab. We port the algorithms to the robot

controller (based on Matlab), running the algorithm and analyzing the data.

ABSTRACT

METHODS

Deep Reinforcement Learning Applied to Dynamic
Systems

Billy Toshi
Emre Yavaş
Mahmut Yasir Esmek
Muhtasham Oblokulov

Prof.Dr.Ahmet Onat

INTRODUCTION

Reinforcement Learning is a type of Machine Learning algorithms which allows software agents and machines to

automatically determine the ideal behaviour within a specific states to maximize its performance. Deep Learning is a class

of methods and techniques that employs artificial neural networks with multiple layers of increasingly richer functionality.

In industry and robotics, kinematics of the plant and the controller mechanisms are the main issues. In this project, we have

the kinematics of the pantograph and we want to apply PID controls to it. However we do not know the PID values of the

system and it is difficult to determine. Therefore we use deep reinforcement learning algorithms to find the appropriate

PID values. At the end, we expect a method which learns to the control values of the robot, so that the robot will follow the

motion paths that are supplied to it.

Our methods mainly consists of 3 parts. Kinematics of the system, Matlab/simulink diagrams and ddpg learnig algorithm.

a) Kinematics of the System

 Kinematics of the system and the equations behind it was ready for us. The only thing to do for this part is just converting
them to Jacobian Matrix and applying them into the Matlab.

REFERENCES

Deep Reinforcement Learning for Continuous Control. (n.d.). Retrieved from

https://www.ias.informatik.tu-darmstadt.de/uploads/Site/EditPublication/Ramstedt_BscThesis_2016

P., T., H., J., J., A., N., T., . . . Erez. (2016, February 29). Continuous control with deep reinforcement learning. Retrieved

from https://arxiv.org/abs/1509.02971Reinforcement

Learning for a Dexterous Manipulation Task. (n.d.). Retrieved from

https://www.ias.informatik.tu-darmstadt.de/uploads/Main/Abschlussarbeiten/ValerianMarg

Watkins, C. J., & Dayan, P. (n.d.). Q-learning. Retrieved from https://link.springer.com/article/10.1007/BF00992698

Assistant(s)
Vahid Tavakol
Arda Ağababaoğlu

 b) Matlab/Simulink

 Simulink diagram consists of many parts but, the most important ones will be explained below.

Part 1)

 For each experiment, the values of the controller parameters are changed iteratively by the ddpg learning algorithm. This
changed values are shown in this part.

Part 2)

 From the reference part we can give a trajectory to the system. This reference
is converted to Force and from feedback we have the angle of encoders. These
force and angle values are converted to the Tork with jacobian matrix. Then
this needed tork value is converted to the voltage value that we need to supply
the system to track the trajectory in the blue box.

Part 3)

 From blue box, we can also obtain the actual angle values of the encoders easily. With these angle values we
calculate the actual position of the pantograph in this part.

 Part 4)

 When system is working, system can behave unexpectedly. For sake of
learning we need to prevent this behaviours. Simulink stops running
when the pantograph exceeds specific borders in this part.

c) DDPG Algorithm

As we mentioned before, in the simulink part, the controller variables are determined by the ddpg algorithm
iteratively and these variables applied on the simulink. Each time these variables are changed by code and
rewards are recorded. Determining variables is the action and the error is our reward and algorithm learns the true
values of the controller variables by recording the each action-reward pairs.

EXPERIMENTS

For deep reinforcement learning we should have a huge amount of data. Since we started to collect data 2 weeks later, we still
need to collect too much data. Therefore we couldn’t find the appropriate controller values, but we have taken a step.

CONCLUSIONS & FUTURE WORK

After doing more experiments, algorithm will learn the exact values of the controller parameters and these techniques can be
used in industry.

For future work, these algorithm can be developed to find the kinematics of the system and the jacobian matrix’s values,
because the kinematics of the machines, plants, vehicles are too complicated to calculate.

