Investigation of eco-friendly, sustainable, natural resources for electrospun carbon nanofibers as energy

storage materials

► STUDENTS / UNIVERSITIES Tayis Arslan/Koç University Işıl Demirkan/Sabancı University Umut Yazlar/Sabancı University

► SUPERVISOR(S)

<u>Abstract</u>

- ➤ There is a great potential of biomass-derived carbons for energy storage.
- ➤ Choosing "green" and economically viable precursor and synthesis process for the production of carbon nanofibers as a sustainable alternative for energy storage applications
- In this project, biomass-derived carbon precursors will be investigated for the production of electrospun carbon nanofibers. Then, the developed carbon nanofibers will be tested as potential anode material in lithium-ion batteries.

Purpose of Project

Fabrication of carbon nanofibers by using lignin which is a sustainable, eco-friendly, non-toxic natural resource.

Introduction

≻Lignin

- ☐ Carbon rich polymer which can be obtained as a biowaste from paper industry
- ☐ Second most abundant macromolecule in
- ☐ Cheap, abundant, low weight and non-toxic
- ➤ Polymer Highly Used in Literature for Carbon **Nanofiber Fabrication**

➤ Polyacrylonitrile (PAN)

- ☐ Syntenic, semicrystalline organic polymer with high electrospinning ability
- ☐ Not-soluble in water but dissolves in DMF ☐ DMF is a toxic solvent and not sustainable.
- ☐ Search for sustainable solvent and polymer
- alternatives

➤ Water-soluble Polymer Alternatives

➤ Polyvinyl Alcohol (PVA)

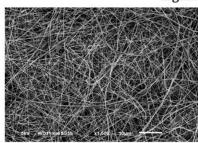
☐ Water-soluble synthetic organic polymer with high electrospinning ability

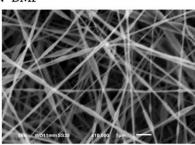
➤ Polyvinylpyrrolidone (PVP)

- ☐ Water soluble synthetic organic polymer with high electrospinning ability
- ☐ Commonly used to produce carbon fibers, but not used with lignin
- ☐ This project examines how PVP and lignin work together to fabricate carbon nanofiber.

Methods

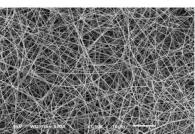
➣ Fabrication

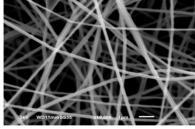

- ☐ Solution preparation of PAN/DMF/Lignin, PVA/Water/Lignin, PVP/Water/Lignin
- ☐ Electrospinning


≻Characterization

- ☐ Scanning Electron Microscopy (SEM)
- ☐ Rotational Viscometer
- ☐ Force Tensiometer

Scanning Electron Microscopy (SEM)


Lignin-PAN-DMF



Total solvent %	Total solid %	Lignin/PAN
88	12	2.348

Lignin-PVA-Water

		(magnification time 10,000X).			
Total solver	nt %	Total solid %	Lignin/PAN		
00		12	2 207		

23 Celcius for Surface Tension 50 Celcius for viscosity meauserement	LG1	LG2	LG2B	LG3	LG3B
Surface Tension (mN/m)	38.31	35.3	33.5	in progress	in progress
Viscosity (mPascal*s)	in progress	in progress	99.4	144.4	140.4

*LG1 (Lignin/PVA/Water – 12% solid, 2.3 Lignin/PVA), LG2 (Lignin/PAN/DMF – 11.9% solid, 2.3 Lignin/PAN), LG2B(Lignin/PAN/DMF – 11.99% solid, 1.85 Lignin/PAN), LG3 (Lignin/PVP/Water/Ethanol – 12% solid, 2.3 Lignin/PVP, Water/Ethanol 1.22), LG3B (Lignin/PVP/Water/Ethanol - 12% solid, 2.3 Lignin/PVP, Water/Ethanol

Summary

- > Lg1, lg2, lg2b, lg3, lg3b solutions were electrospun. Viscosity and surface tension of these solutions were measured.
- Fiber formation was observed in lg1, lg2 and lg2b in SEM
- > Lg3 and lg3b were not successfully electrospun due to high viscosity and solvent evaporation
- > Evaporation of ethanol and multiple jet formation were major problems in electrospinning of Lg3 and lg3B.

Future Works

- Carbonization will be performed.
- Fibers will be formed from PVP/Lignin/Water solution.
- Nanoparticles of Si, Sn will be synthesized to increase battery capacity.
- ➤ Battery performance will be tested.