
Student(s) Faculty Member(s)

We consider the problem of minimum cost sequential testing (diagnosis) of a series (or

parallel) system under precedence constraints. The model of the problem is a nonlinear

integer program. We develop two different approach to solve the problem. Firstly, we

develop and implement a Simulated Annealing algorithm for the problem. And, we

compare the performance of the Simulated Annealing algorithm with optimal solutions.

The simulated annealing algorithm is particularly effective as the problem size gets

larger. Secondly, we develop a General Tree Type data search algorithm which finds

and sorts all feasible permutations under precedence constraints in order to find the cost

minimizing solution.

Keywords: Simulated Annealing; Tree Data Structure; Sequential Testing.

ABSTRACT

PROJECT DETAILS

Sequential Testing with Precedence Constraints

Duygu Ay
Cankut Coşkun

Tonguç Ünlüyurt

After the implementation, we change simulated annealing parameters that are temperature

and iteration number. We compare the results. Then, we take the optimality gap with

optimal solutions for each 450 data and take the average optimality gap for each

parameter. We realized that as iteration number increases, the results are closer to optimal

solutions, but there is no significant change with temperature factor. Tables at the top

shows the average optimality gap. Iteration numbers are 200 vs 100 from top to bottom.

A Faster Heuristic Algorithm Using Simulated Annealing: Simulated annealing is a

method for finding a good (not necessarily perfect) solution to an optimization problem.

It accepts worse neighbors in order to avoid getting stuck in local optima; It can find the

global optimum if run for a long enough amount of time. The problem of sequential

testing with precedence constraints is a good example: we are looking to visit all

components sequentially by looking precedence constraints in order to minimize the

total expected cost. As the size of components gets large, it becomes too

computationally intensive to check every possible sequence. At that point, we need an

algorithm.

For our project, we implement Simulated Annealing algorithm in R programming

language. In the implementation, we have three function: Simulated annealing,

Generate a neighbor sequence and Calculating the cost of sequence. The key part is to

generate a neighbor sequence. This function is recursive. It takes a feasible initial

sequence, swaps two random consecutive points which have not a precedence relations

and creates a new feasible sequence. We found good solutions close the global optimum

at 100 iteration. The algorithm reads 450 txt files (our data) and writes the results in a

excel file.

OBJECTIVES

1. For the problem of sequential testing, a faster heuristic algorithm was developed by 

using simulated annealing for efficiency concerns.

2. In order to find the cost minimizing permutation for the problem, enumeration of all 

possible solutions was developed by using a tree data structure.

CONCLUSIONS

▪ We realized that as iteration number increases, the results are closer to optimal

solutions, but there is no significant change with temperature factor for simulated

annealing heuristic algorithm.

▪ Implementation of the enumeration algorithm has not finished yet. Total cost of

each leaf will be calculated and stored in a container data type. After enumeration

succeeds, it will find the feasible solution with minimum cost.

PURE

Enumeration of All Possible Solutions Using a Tree: We develop an enumeration

algorithm which finds and sorts all feasible permutations under precedence constraints in

order to find the cost minimizing solution. Since not all permutations are feasible under

precedence constraints the first main objective of our algorithm is the enumeration of all

feasible permutations. These constraints are described by an acyclic directed graph where

an arc from i to j means j cannot be tested in the absence of i. This relationship can be

represented by an adjacency matrix.

In order to enumerate all feasible solutions we build a General Tree Type data search

algorithm and implement in C++. Each tree starts with a root which does not have any

precedence constraint and add all possible members of the next generation. Thus the

second level of the tree is created. Each second generation child add it’s own children and

create the third level. It goes on like this until the Nth generation. The Nth generation is

called as leaves of the tree. Each leaf is a possible solution which follows a unique path.

When a column of the matrix is consists of all zeroes, that column is the root of a tree.

After chosen root we extract the column and the row belongs to that component. Simply

we are extracting Minor (M i x i ) of that component. All zero columns of minor will give

us children for next generation. Until the minor becomes 1 x 1 matrix algorithm keep on

extracting and adding new generations. When it reaches to end genetic info of leaves

keeps a unique solution.

Simulated Annealing Algorithm Graph

Tables of Average Optimality gap with Simulated Annealing Parameters for each Data size

A series system with 5 components Adjacency matrix of the system

Tree Search of the System


