# **APPLYING RAMAN TO UNDERSTAND WHERE BORON GOES IN LONG AFTERGLOW CERAMICS?**

STUDENTS / UNIVERSITIES DEFNE ÇİRCİ

## SUPERVISOR(S) CLEVA OW YANG

Periodic



ELECTRONS

#### AIM

We are trying to understand the structural changes induced by boron in Strontium Aluminates via Raman spectroscopy which is challenging to determine due to multiphase structure. We are using computational analysis to get more accurate results



#### **QUANTUM ESPRESSO**

«IF WE UNDERSTAND THE ELECTRONS, WE CAN UNDERSTAND **EVERYTHING**»

**WHAT** Eu<sup>+2</sup> and Dy<sup>+3</sup> and 30% mol boron oxide coactivated Strontium Aluminate

WHY It can be a candidate for zero energy consumption lightening. Eu+2, Dy+3 and B induced strontium aluminates can exhibit green afterglow up to 14 hours, whereas without B, it can exhibit

only 2-3 minutes afterglow.

| MIT Atomic-Scale Modeling Toolkit (12:01 pm                               | )                                        | * | 🗙 Terminate | 🕪 Keep for la |
|---------------------------------------------------------------------------|------------------------------------------|---|-------------|---------------|
| Atomic Scale Modeling<br>Toolkit<br>Massachusetts Institute of Technology | Application:<br>PWSCF (Quantum Espresso) |   |             | •             |
| ●Input → ② Simulate                                                       |                                          |   |             |               |

### WHERE

Exit signs, pedestrian crossings, luminous vest, lightening of roads...



Dr. Nuri Solak of Kupfer Ltd

| the wave function<br>is periodic                                       |                                       |                                                                     | NNER CORE                                       | VALANCE                                                                |
|------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------|
| function                                                               |                                       |                                                                     |                                                 |                                                                        |
| probability of the<br>electrons being<br>found in certain<br>locations | https://www.researchg<br>DENSITY FUNC | gate.net                                                            | }                                               | play a<br>significant<br>role in<br>the chemica<br>binding of<br>atoms |
|                                                                        | Total energy is a fu                  | nctional of<br>ensity                                               |                                                 |                                                                        |
| Many-Body<br>Perspective                                               | DFT<br>Perspective                    | <ul> <li>more e complie</li> <li>Schröd</li> <li>possibl</li> </ul> | e to set up equ                                 | than the<br>nction in the<br>n                                         |
| e (ion) -                                                              | electron                              | <ul> <li>possibl</li> <li>solutio</li> </ul>                        | e to set up equ<br>ns give the sys <sup>.</sup> | uations who<br>tem's electro                                           |

| Calculation:                         | scf                                       |
|--------------------------------------|-------------------------------------------|
| Bravais lattice:                     | face-centered cubic                       |
|                                      | 1.0 0.0 0.0<br>0.0 1.0 0.0<br>0.0 0.0 1.0 |
| Lattice constant (Bohr):             | 7.5                                       |
| XC Functional:                       | LDA (Perdew-Zunger)                       |
| Occupations:                         | fixed 💌                                   |
|                                      | gaussian                                  |
|                                      | 0.001                                     |
| Visualize structure in XCrySDen?:    | e = no                                    |
| Perform spin-polarized calculation?: | • = no                                    |
|                                      | 0.0                                       |
| Specify number of bands?:            | • = no                                    |
|                                      | 8                                         |
|                                      | Simulate >                                |

Using theoretical calculation of vibrational mode frequencies to determine the location of B in the structure using Quantum Espresso

HOW

#### **RAMAN SPECTROSCOPY**

- Energy absorbed from the inelastically scattered light distorts the random motion of the molecules and make them move together
- Molecules absorb light of specific frequencies that are characteristic to their structure
- Different vibrational modes -spectral footprints- can be used to identify unknown materials





density

#### density and energy

- Simple
- applied to fairly large molecules

https://www.researchgate.net

#### **CONCLUSIONS**

- Quantum Espresso is a useful tool for microscopic understanding and with the help of DFT, we can use it find position of the B atoms in the large and complex structures like dopant induced Strontium Aluminates while having a low time complexity.
- Role of necessary functions like &control, system, electrons, atomic species and positions for analysing the Raman Data are learned and used for simpler molecules.
- In order to find the best approximation, problems which are listed below should be analysed deeply.

Which atoms are involved?

- Where are the atoms sitting?
- How big is the unit cell?
- At what point do we cut the basis off?



When to exit the self consistent loop?



https://ocw.mit.edu

### ACKNOWLEDMENTS

• I would like to thank to my advisor Cleva Ow-Yang and her PhD student Arzu Ergene for their support. I have learned a lot from their experiences about science and life. I am greateful.

## REFERENCES

- https://www.researchgate.net/figure/Density-functional-theory-DFT-abandonsthe-manyparticle-electron-reality-in-favor-of fig2 259406317
- https://www.nobelprize.org/prizes/chemistry/1998/8805-density-methods/
- https://www.quantum-espresso.org
- Markus Buehler, and Jeffrey Grossman. 3.021J Introduction to Modeling and Simulation. Spring 2012. Massachusetts Institute of Technology: MIT <u>OpenCourseWare</u>