FACULTY OF
ENGINEERING AND
NATURAL SCIENCES

Homomorphic Encryption

Student(s)

llayda Begim lzci
Seyda Kose
Onat Kutlu

Faculty Member(s)
Erkay Savas

-~

Introduction

With the modern communication technologies, privacy became one of the main
concerns since the collected data may contain secret information. Homomorphic
encryption allows to process encrypted data without decrypting it. Therefore, It is a

powerful feature to enable computation and analytical processing on encrypted data by
ensuring the confidentiality of that processed data. However, it was limited at first since

It was supporting just one operation to manipulate the original plaintext by using only
ciphertext.

Fully Homomorphic Encryption (FHE) scheme which supports both addition and
multiplication operations on ciphertexts Is invented by Craig Gentry in 2009. This
scheme permits more manipulation of the plaintext by modifying the ciphertext.

Throughout this project we aimed to introduce an efficient sorting algorithm that sort
encrypted data with Fully Homomorphic Encryption scheme. We analyze several
circuits and their multiplicative depth complexity. In this algorithm, we focused on the
multiplicative depth of the comparison and sorting circuits to cope with massive noise
growth. In our sorting scheme we used the homomorphic encryption library SEAL
(Simple Encrypted Arithmetic Library).

/--"-""— ""*». T — -

Plaintext Ciphertext " Unsecured |
C | ou d Client side ' communication “ Cloud storage
L s T —= S\ | medium V= e
Computing |(My sensitive data |l P O — ” I/ 1#sd9?/$%fg 45)] \I
& I
Today: , e s 2 |
| | i |
ion =
: My sensitive data | e litsd9?/5%fg(a5H I :: | ,l
< . W BN _//; H S =
I
Client side : I i
________ — ! :! - Cloud computing -
(My sensitive data e litsd9?/5%fg(45}] i - ﬂ I/ I##sd92/$% (a5} aiatiid \
| & | |] . &
| ; i My sensitive data
| 8 Al Renbms
l _] 1 Processing
[y sentive et o222 PTERTTRL L | Oy i,
B] ! el &
Nomm b . | ¥ Adfsd&12@ff90~ J
[
\ y \ = /
. Plaintext Ciphertext ;f’ Unsecured .\\n Cloud ti
Homomorphic =~ dientsiee | communication | - Cloud computing &
Encryption for / e mpm— O I T [5452/ $%1gas) \
| My sensitive data l#sd9?/5%fg(a5} . " l
- . l I " :i I Proce:&hni:
Computing: | o S t |
[isizoro BB |
(& :
R T T o
T e e e el - ey \

i

|

ti :

100 |o———r T ol o

T — — T— — W—— W—— — —— —— —— —

Objectives
*Understanding the concept of homomorphic encryption and its applications.

*\Working on privacy-preserving data processing applications leveraging the power of

homomorphic encryption and software libraries that implement it.

*Using these newly gained knowledge to write a sorting algorithm for encrypted

Integers.))
Project Details

Algorithm 1. Compares two integers and constructs the comparison matrix

1: vector<vector<Ciphertext>> matrix(4, vector<Ciphertext>(4)) #Ciphertext matrix
2:for (int 1=0; I1<4; 1++) #Fills the matrix
3: M[][i] <« 0

4 for (intj =i+ 1; j<4 ;j++)

5: M[1][j] <« Compare(X[1];X[1])*
6: M[j][i] < 1-M[][i]

{ end for

8: end for

Algorithm 2: Uses full adder to find sum of the rows

1: vector<vector<Ciphertext>> Fulladdermatrix(4, vector<Ciphertext>(2));
2: for (intk = 0; k < 4; k++)

3: for (int1 =0; | <4, |++)

4. Sum<«— matrix[1][k]

5. end for

0: Carry«— matrix[0][k] XOR matrix[1][k] XOR matrix[2][k] XOR matrix|[3][k]
[Fulladdermatrix[k][0] «— Carry

8 Fulladdermatrix[k][1] «<— Sum

9:end for

#Fulladder is the matrix holding encrypted bits of sum of the rows

-~

Algorithm 3: Finds the largest integer

1: A—Fulladdermatris[0][0] * Fulladdermatris[O][1]*numl
2: B«Fulladdermatris[1][0] * Fulladdermatris[1][1]*num?2
3: C—Fulladdermatris[2][0] * Fulladdermatris[2][1]*num?3
4: D<—Fulladdermatris[3][0] * Fulladdermatris[3][1]*num4
5. A+B+C+D

{ Encryption parameters:
poly modulus: 1x*16384 + 1
coett modulus size: 438 bits
plain modulus: 1824

\ noise standard deviation: 3.19

1

SRRy =R
Ll

L i
i M

= =~ ~ ™

m M

o o o0 06
- 0T

m M
m M

lﬂ
:4
numbers and generating comparison matrix
HmpﬂrlEUH time [1295684 microseconds]
ison matrix has been uHHHrdhud [18 3419288 microsec conds |
vted version H+ comparison matrix
5

1L 1][¢©
[I[-
1L @][¢©
[[

O 3 3O 3 3

=

m M
rII—'rT.I—'_'_'_'_'

. I il | [] |] []

= — — — —
L 1 1 1
_l —I—r

(&}

'|:|
(7% I
I Tr
i e N __|_ __|_

|'|_-'|
i
A = 3

)

U e B s B s B e |
(¥

O = =

calculat ing sum [1981598 microseconds]
al ula ing carry [871487 microseconds]
7862127 microseconds]

2 =M E M M =
™

= - -
I—l

(%)

] F noise budeget left

B
=
i

L=y

t +Dund (8149383 microseconds]
time [37371819 microseconds]

* Compare function compares two encrypted €-bit integers E(X) and E(Y) such
that x. is the it" bit of X and outputs 1 or O.

Less Than Circuit E(x,) <E(y,) — (y,- (x,D 1))
Equality Circuit E(x,) = E(y)— (x,D vy, D 1)

Compare(X,Y) — E(X) <E(Y)=Yk=1 (B(x) <E(y,) i<t Bx) = E(yy)

Conclusion and Future Work

In conclusion our algorithm is successful to find the integer in desired position (ex: the
largest integer, the smallest integer etc.). In the table below you can see the time elapsed
to complete tasks in seconds. However we couldn't manage to sort all of the integers in
a row. In the course of the project, our main problem was reducing the noise of
ciphertexts. Most of the operations consumed a lot from our initial noise budget thus it
was not possible to perform as much operations as we needed to compare and sort the
numbers. To overcome this problem, we tried to optimize our algorithm by decreasing
the number of operations and setting parameters effectively. As a future task, we are
planning to use packing techniques such as CRT(Chinese Remainder Theorem)
batching to do parallel operations. By this way we expect to get lower depth, resulting
In an accelerated process and reduced noise.

Time 5ale
Average comparison time for 2 encrypted integers 1,3
Time for generating the comparison matrix 18
ﬁ.verage time for calculating sum 1,9
Average time for calculating carry 0,8
Time for generating fulladder matrix 7,8
Time past for finding the highest number 5,1
Total process time 37.3 seconds
REFERENCES

= Cetin, G. S., Dor06z, Y., Sunar, B., & Savas, E. (2015). Depth Optimized Efficient
Homomorphic Sorting. Progress in Cryptology -- LATINCRYPT 2015, 61-80.

= |s there any good tutorial/resource to understand Homomorphic Encryption from
scratch? OR any flow of background study to understand it? - Quora. (n.d.).
Retrieved from https://www.quora.com/Is-there-any-good-tutorial-resource-to-
understand-Homomorphic-Encryption-from-scratch-OR-any-flow-of-background-
study-to-understand-it

= Gentry, C.: A Fully Homomorphic Encryption Scheme. Ph.D. thesis, Stanford
University (2009)

