A Study on Automata and Finite State Machines Faculty Member(s) Hüsnü Yenigün Kamer Kaya

PROGRAM FOR UNDERGRADUATE RESEARCH

Student(s)
Berk Çirişci
Yuşa Emek
Ege Sorguç

δ

Finding a shortest synchronizing sequence (SS) (Eppstein, 1990) and a shortest homing sequence (HS) (Sandberg, 2005) are both NP-HARD problems which are well-known in literature. There are heuristics to find a short synchronizing sequence but heuristics to find a short homing sequence are not widely studied.
We discover a relation between homing sequences and synchronizing sequences so that SS heuristics can be applied to

find a homing sequence.

• We adapt synchronizing (SS) heuristics to homing sequences.

OBJECTIVES

 Creating a pair automaton called homing automaton (HA) from the given FSM
 Using synchronizing heuristics on HA to find homing sequences
 Adapting synchronizing heuristics to homing sequences in order to reduce the homing automaton creation time **Theorem.** Let $M = (S, X, Y, \delta, \lambda)$ be an FSM and $A_M = (S_A, X, \delta_A)$ be the HA of M. An input sequence $\bar{x} \in X^*$ is an HS for M iff \bar{x} is an SS for A_M . **Proof.** If \bar{x} is an HS of M, for any two states s_i and s_j in M, $\lambda(s_i, \bar{x}) \neq \lambda(s_j, \bar{x})$ or $\delta(s_i, \bar{x}) = \delta(s_j, \bar{x})$. Since $\delta_A(\{s_i, s_j\}, \bar{x}) = q^*$ for any $\{s_i, s_j\} \in S_A$. For $q^*, \delta_A(q^*, \bar{x}) = q^*$. Hence \bar{x} is an SS for A_M .

$$I_A(q,x) = \begin{cases} \{\delta(s,x), \delta(s',x)\} &, (q = \{s,s'\}) \land (\delta(s,x) \neq \delta(s',x)) \land (\lambda(s,x) = \lambda(s',x)) \\ q^{\star} &, (q = \{s,s'\}) \land (\delta(s,x) = \delta(s',x)) \\ q^{\star} &, (q = \{s,s'\}) \land (\lambda(s,x) \neq \lambda(s',x)) \\ q^{\star} &, (q = q^{\star}) \end{cases}$$

PROJECT DETAILS

(q^{\star})				, $(q = q^*)$													
							<u>CO</u>	NCL	. <u>USI</u>	<u>ONS</u>							
SS based heuristics HS based heuristics																	
			Shor	rtest		P1 Time	Gree	dy SS	SynchroP SS			Fast F	loming	Greedy Homing		SynchroP Homing	
tates	Inputs	Outputs	Length	Time	HA TIME		Length	P2 time	Length	P2 time	P1 Time	Length	P2 time	Length	P2 time	Length P	2 time
32	2	2	6,1	2410,83	46,39	11480,64	7,59	10,36	6,69	1925547,43	81,66	7,69	181,93	7,71	149,62	7,22	3019,61
32	2	4	4,02	320,36	27,18	7372,63	4,79	5,68	4,32	1134028,55	52,08	4,8	120,58	4,8	104,72	4,65	2127,39
32	2	8	3,04	96,07	16,99	5493,58	3,54	3,42	3,21	465578,61	33,31	3,58	86,7	3,57	55,12	3,41	1594,03
32	4	2	5,2	10253,94	54,23	10298,575	7,15	7,21	6,21	2341436,82	56,83	7,2	117,17	7,14	85,84	6,76	1850,09
32	4	4	3,7	580,23	53,43	10158,075	4,69	5,84	4,07	1306012,45	49,48	4,7	126,91	4,7	88,79	4,59	2272,51
32	4	8	3	154,82	33,38	7649,155	3,56	3,73	3,05	516154,69	16,27	3,59	89,11	3,59	56,87	3,49	1784,65
32	8	2	5	41776,44	127,54	16875,96	7,07	7,78	5,62	2922721,11	66,46	7,1	132,64	7,09	99,72	6,7	2167,34
32	8	4	3,19	1590,49	80,34	11880,44	4,67	4,71	3,92	1328281,55	28,43	4,7	98,81	4,7	67,25	4,54	1823,6
32	8	8	2,97	394,53	69,37	11249,46	3,56	3,84	3,1	561097,23	18,41	3,58	95,27	3,58	63,24	3,52	2004,3
64	2	2	7,65	24051,55	185,61	240952,53	9,46	24,16	8,45	559041289,51	278,64	9,53	313,19	9,66	302,35	9,14	25852,08
64	2	4	4,93	2281,29	161,1	203926,01	5,81	22	5,13	3590/7/61,35	278,61	5,68	282,08	5,84	253,67	5,64	27990,49
64	2	8	3,73	695,04	123,11	202362,82	4,28	21,52	3,98	145568201,2	231,76	4,27	231,24	4,27	194,09	4,24	26139,92
64	4	2	6,95	278938,97	447,14	365706,26	9,18	24,12	7,75	/95062568,44	424,43	9,24	385,75	9,24	351,03	8,59	30794,32
64	4	4	4,25	10815,85	298,89	280419,83	5,69	16,92	5	428513432,51	292,72	5,69	270,94	5,73	243,5	5,57	26754,09
64	4	8	3,12	1052,35	237,58	367358,17	4,24	12,//	3,81	1549//902,12	222,99	4,29	217,17	4,29	193,86	4,27	25266,44

• We have implemented 2 heuristics which work on the created homing automaton and finds SSs on the homing automaton, which are equvailent to HSs on the initial FSM.

- We have implemented 3 homing heuristics by adapting synchronizing heuristics for homing sequences. They work on the initial FSM.
- SS Heuristics (which work on the HA) generally find shorter homing sequences but, as a trade off, these heuristics consume much more time because of the homing automaton.

A synchronizing sequence(SS) S is an input sequence that takes the machine to the unique final state regardless of the initial state.
A homing sequence(HS) H is an input sequence such that for all states output sequence to H uniquely identifies the final state.
Given an FSM M₀, it is possible to find a homing sequence for M₀ by applying synchronizing heuristics to its corresponding homing automaton H_A.

• Moreover, we can adapt widely known synchronizing heuristics to homing sequences which enables us to work on the given FSM M_0 omitting the homing automaton creation step.

• Among HS heuristics we implemented, SynchroP HS is the best in terms of the sequence length since it performs a deeper analysis on the FSM.

D. Eppstein. Reset sequences for monotonic automata. SIAM J. Comput., 19(3):500–510, 1990.
S. Sandberg.: Homing and synchronizing sequences. In: Broy, M., et al. (eds.) Model-Based Testing of Reactive Systems. LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005).