
Student(s) Faculty Member(s)

A finite state machine or finite automaton is a mathematical model of computation. It is

an abstract machine that can be in exactly one of a finite number of states at any given

time. In this work, we carried out a research on automata and finite state machines,

which are used as formal notations to model the behavior of systems at an abstract

level. Based on the analysis of these formal models, one can derive tests for the

implementations of the systems.

The FSM can change from one state to another in response to some external inputs; the

change from one state to another is called a transition. An FSM is defined by a list of its

states, its initial state, and the conditions for each transition [2].

In accordance with the general classification, the following formal definition is found:

An automaton and a FSM can be visualized as directed graph which consists on

nodes and directed edges. In this visualizing system, states correspond to the nodes and

the transition corresponds to the edges of the graph. For an automaton the edges of the

graph are labeled by input symbols, whereas for an FSM the edges are labeled by an

input and an output symbol.

ABSTRACT

PROJECT DETAILS I

PROJECT DETAILS II

USING SYNCHRONIZING HEURISTIC FOR
GENERATING UIO SEQUENCES

Elif Şevval Köroğlu
Selami Doğan Akansu
İlayda Tukuş
Yavuz Güleşen

Hüsnü Yenigün
Kamer Kaya

For an FSM M = (S, X, Y, δ, λ), a UIO (Unique Input Output) Sequence of M is an

input sequence H̅ ∈ X* such that for a state s ∈ S, λ(s, H̅) ≠ λ(s’ , H̅) for any state s’ ∈
S. For FSM 𝑀0 given in Figure 2, a is an UIO sequence for state 2.

Theorem. Let M = (S, X, Y, δ, λ) be an FSM and AM = (SA , X, δA) be the HA of M.

An input sequence x̄ ∈ X* is an HS for M iff x̄ is an SS for AM . Proof. If x̄ is an HS of

M, for any two states s i and s j in M, λ(s i , x̄) ≠ λ(s j , x̄) or δ(s i , x̄) = δ(s j , x̄). Since

δA ({s i , s j }, x)̄ = q * for any {s i , s j } ∈ SA . For q * , δA (q * , x̄) = q * . Hence x̄ is

an SS for AM .

All the algorithms are implemented in C++ and the automata used for these

experiments are randomly generated. The purpose of this paper to find UIO sequence

for FSMs which is a hard application since its function grows exponentially. Instead of

using regular method, we turned the FSMs into homing automatons and modify the

original code we had. In this modification process, we changed random generation part.

After random generation, to find UIO for each state, we traced over all the transition

and we didn’t let for any 2 states s and s’ ∈ S and i ∈ X, δ(s, i) = δ(s’ , i) and λ(s, i) =

λ(s’ , i) at the same time. Because if any 2 states merge with a single input and

producing same output, there is no way to separate them afterwards. After this step, we

generated a special UIO automaton for this FSM. Before applying existing

synchronizing sequences (Greedy and SynchroP) from [1] for UIO automaton we

changed the active state set from S to special set for our algorithm. To find a UIO for

state s ∈ S, we put each state of homing automaton which are the pairs of original FSM

to active (to be merged) set if they consist state s. After adding all pairs containing s, we

we add q* to the active set. With the existing synchronizing sequence heuristics, we

tried to merge every element in active state set and as expected they all merged in q*.

The synchronizing sequence that we obtained for UA is also UIO sequence for FSM.

Then we compare the results of these heuristics.

OBJECTIVES

1- Our code creates random finite state machines. We try to obtain specific states's UIO.

Therefore we changed active states.

2- If there are more than one states which go another state with a same output, we

changed either output or next state. In this way, we obtain an FSM where no two states

merge without being distinguished.

3-We did some tests and we transfered the result data to excel format. Then we

compared the Greedy and SynchroP.

REFERENCES

[1] D. Eppstein. Reset sequences for monotonic automata. SIAM J. Comput.,

19(3):500–510, 1990.

[2] Z. Kohavi. Switching and Finite Automata Theory. McGraw–Hill, New York, 1978.

[3] B. Cirisci, M. Emek, E. Sorguc, Using Synchronizing Heuristics to Construct

Homing Sequences, MODELSWARD 2019

CONCLUSION

We saw that the time elapsed after

Greedy and SynchroP are similar.

Normally SynchroP is much slower

but because of the generation of UA

and BFS phase of these heuristics, we

thought that this time difference is

normal. As expected, SynchroP is

finding much shorter sequences

compared to Greedy. As a future work

we can try to find a way to construct a

better designed UA without the

necessity of the process after random

generation.

