
For more than 10 years; Supermassive black holes, merging neutron stars,

streams of hot gas moving close to the speed of light and other phenomena in

which gamma-ray radiation is generated, which is the most energetic form of

electromagnetic radiation, can be observed by Fermi Gamma-ray Space

Telescope ("Fermi Gamma-ray Space Telescope," 2019).

Fermi Gamma-ray Space Telescope, formerly GLAST(Gamma-ray Large

Area Space Telescope) provides a better understanding of the conditions of the

distant universe. Thence, Astrophysicists can study and observe the phases of

evolution of the Universe. Fermi collects data by using Gamma-ray Burst

Monitor (GBM) which extends the energy ranges in which bursts are observed

("Fermi: Science - Instruments - GBM," 2011). Thus, gamma-rays can be

detected between 8keV to 40 MeV("Fermi Gamma-Ray Burst Monitor," n.d.) .

Fermi Gamma-ray Space Telescope has collected a detailed large data,

which includes photon energies and arrival times with 2-micro sec resolution, for

more than 10 years. In this project, we aim to analyze and make some

observations on the data. To make the analyzing process faster and smoother, we

develop algorithms to manage the database and to identify possible

inconsistencies in data to prevent glitches in the automated search by using the

Python programming language.

INTRODUCTION

METHODS & PROCESSES

DEVELOPING ASTROPHYSICAL DATA

MANAGEMENT & PROCESSING TOOLS 1

İlker GÜL

Melike Sena ÖZGEN

Mehmet Akif GÜLTEKİN

After learning the basic

knowledge about Linux and data,

We started to write a Python code

to get the header, for those

unfamiliar with headers, they

consist of a list of 80 byte “cards”,

where a card contains a keyword, a

value, and a comment, of the file.

For that, we import Astropy library

to make calculations and reading

Flexible Image Transport System

(FITS), which is the data format

that is commonly used in

astronomy field, files ("FITS File

handling (astropy.io.fits) —

Astropy v3.2.1," 2019). To develop

our code, we tried to automate our

code to read all the detector of a

one day since we have 12 detectors

Fermi Gamma-ray Burst Monitor’s data is available on NASA’s website.

Therefore, our supervisors’ downloaded the necessary data. In the first weeks;

before writing a Python code related to our project, we learned and studied the

contents of the data to understand what will be needed in the filtering algorithm.

In addition to that, we are using a Linux terminal in our project. Therefore, we

needed to learn basic command for Linux in the first weeks.

OBJECTIVES

To develop a searching and filtering algorithm by using the Python

programming language in order to make analyzing process of Gamma-ray

transient events faster in Fermi’s GBM data.

REFERENCES

➢ The Fermi Gamma-ray Space Telescope. (2019, May 9). Retrieved from

https://fermi.gsfc.nasa.gov/#whatsfermi

➢ Fermi: Science - Instruments - GBM. (2011, November 1). Retrieved from

https://fermi.gsfc.nasa.gov/science/instruments/gbm.html

➢ Fermi GBM. (n.d.). Retrieved from https://www.mpe.mpg.de/617954/Fermi-

GBM

➢ FITS File handling (astropy.io.fits) — Astropy v3.2.1. (2019, June 16).

Retrieved from https://docs.astropy.org/en/stable/io/fits/

PLANS FOR THE PROJECT

In the next stage, the comparison of GTI (Good Time Interval) and the

difference between TStart and TStop will be done and, the plotting of the updated

data will be covered. Then, using histogram will be the next step for the process.

Moreover, reading the actual data instead of the header of a file will be the next

challenging part, that will be studied in this project.

To summarize, improved data management and upgraded processing tools

should be prepared in order to have an advancement in the project

Yuki Kaneko GÖĞÜŞ

Ersin GÖĞÜŞ

Can GÜNGÖR

on GBM. Then we tried to automate our code for every file that we currently have
in our project.

After recent developments on the data by Nasa, which was an update for the

file, we have rewritten our code to work on the updated version. To clarify, the

update was related to time intervals in the data for a one day for each detector. In

the new version, a single day data for a single detector was divided into 24. So,

there are 12 x 24 = 288 files per day. Furthermore, we made visual improvements

to our output by adding a different color to make the reading process smoother.

To conclude, we made an algorithm that search the data to reach exposure

time of each day. We use input the specify the date or we can automatically run the

code to reach every file’s exposure time for every day have in the data to detect

overlap and missing time intervals. An example can be of the output can be seen

above.

