Investigation of eco-friendly, sustainable, natural resources for electrospun carbon nanofibers as energy storage materials

Student(s) Zeynep Durmaz Işıl Demirkan Umut Yazlar

Faculty Member(s) Serap Hayat Soytaş

Sabancı. Universitesi

PROGRAM FOR UNDERGRADUATE RESEARCH

Abstract

Choosing "green" and economically viable precursor and synthesis process for the production of carbon nanofibers would make them a sustainable alternative for energy storage applications. Nature provides a wide variety of renewable raw materials with diverse properties and chemical compositions. In this project, lignin as a biomass-derived carbon precursor was investigated for the production of electrospun carbon nanofibers.

Lignin-PAN Solution

Purpose of the Project

- Characterization of lignin as a biomass-derived carbon precursor
- Investigation of electrospinnability of lignin for the production of electrospun carbon nanofibers
 Introduction

Lignin

bio-waste of paper production

LSEM images of nanofibers from Lignin-PAN solution (magnification times 2000X, 10000X).

SEM

Lignin-PVA Solution

SEM images of nanofibers from Lignin-PVA solution (magnification times 2000X, 10000X).

Lignin-PVP Solution

SEM images of nanofibers from Lignin-PVP solution (magnification times 3000X, 2000X).

carbon rich polymer

carbon density of lignin allows its usage in the production of carbon nanofiber

Poly vinyl alcohol (PVA)

water soluble synthetic polymer

Polyacrylonitrile (PAN)

synthetic, semicrystalinne organic polymer

Electrospinning

method to produce ultrafine fibers by charging and ejecting a polymer melt or solution under a high voltage electric field

Methods

Summary

- Lignin was characterized via NMR and FTIR
- Four types of solution were prepared
 Lignin-PAN-DMF with a 10% solid weight ratio
 Lignin-PVA with a 10% solid weight ration
 Lignin-PVP with 8% and 10% solid weight ratio
- Electrospinning technique was used to produce nanofibers

Future Works

- Solution preparation Lignin/PVA, Lignin/PAN and Lignin/PVP
- Nanofibers production using electrospinning
- Characterization of lignin and lignin-based nanofibers via
 - Scanning electron microscopy (SEM)
 - Fourier Transform Infrared Spectroscopy (FTIR)
 - Proton Nuclear Magnetic Resonance (¹H NMR)
 - Thermogravimetric Analysis (TGA)

- Effect of surfactants will be investigated for nanofiber production.
- Carbonization of lignin-based nanofibers will be performed.
- Electrochemical performances of lignin-based carbon nanofibers will be investigated in Li-ion battery cells