High Performance | ._Sabanc1 .

Universitesi

;v
S e e ," » " .. e S
-1 1 ‘,.-. ;\ — ~? r fr—V; -~ ’ \
- | I f
mr H"‘" TI’"FL’:L‘J.:_'EJ \\
¥
1

1d PROGRAM

Ha - FOR
M er UNDERGRADUATE
RESEARCH

onh an FPGA fc

SaraJ
Alperen

Q
[J [J
Abstract Project Details Ii
o clk
orange banana o
¥ output{1.0]
o write_done
W state_0[3:0]
h3 ¥ data[31:0] 10a3a55f
o query 0
o query_o U
o Stop_the_clock § FALSE
¢« clock_period 10000 ps
/ o clk

o en
¥ output{1:0]
o write_done
\\ @ query_done
e & ¢! state_0[3:0]

0 1 0 0 1 0 0 ¥ data[31:0]
- . - ' A ' @ query 1
@ query o U

o stop_the_clock | FALSE

Figure-1
« clock_period 10000 ps

As the database systems increase their performance to meet the demand of today’s
network and storage applications, the need for fast and memory efficient database Figure-4

algorithms also become more significant. Bloom filters are probabilistic data structures A single PBF in our implementation has the length of 4096 bits. It uses two hash
that perform fast membership queries with sub-linear memory complexities. They are
used 1n string matching, deep packet inspection and web cache applications. The fact
that bloom filter mostly uses binary operations enables us to utilize the FPGA for high

functions to map the incoming data to the bit array. Bit extraction hashing is used due to

its performance on hardware implementations as the hashing operation can be
completed within the clock cycle.

performance implementations compared to commercial processors. In our design, we

have used partial bloom filters which resulted in lower false positive probability and When the number of elements inserted to the PBF is around 1400, the false positive
less clock cycles required to execute query operations with a trade-oft in memory. The probability of the PBF will be about Y. This project uses five of the said PBFs and
parallel nature of the FPGA allowed us to achieve greater performance by using combines their outputs. Therefore, the false positive rate of the whole filter will be
multiple bloom filters. As a result of the designed architecture, we have obtained an 0.1%.

timated th hput of 1.81 Gb 1th ly 2.5 Kilobyt tion.
CRHITETEE THOUSHPHE © pS WITHIMETELY HODYIE TEIOLY CONSHIPHON Each PBF has i1ts own dual port distributed RAM that 1s made of LUTs. With this

configuration both insertion and query operations take 3 clock cycles.

en=0

Implementation results show that the design uses 1004 LUTs and 227 FFs which 1s
about 2% of the onboard resources. The implementation runs at a clock frequency of
170 MHz which was increased from 162 MHz after basic floorplanning. Together with
32-bit input and the 3 clock cycles required for a query operation, the throughput of the
implementation 1s about 1.81 Gbps.

Figure-2
Objectives
e The aim of this project 1s to implement a high performance bloom filter on the
FPGA environment for database applications.
e The implemented design will have a high throughput. Figure-5
Conclusions
Project Details o | |
In this project we have implemented a high performance bloom filter on an FPGA.
The bloom filter reached a false positive possibility of 0.1% when more than a thousand
items were 1nserted.
Partial bloom filters have been used to reduce the number of memory accesses to a
data_in[31:0) : single RAM module during a query operation which improves the performance. Our
Hashing module : : : : : :
clock output implementation achieved an estimated throughput of 1.81 Gbps. Based on this project,
the performance of different hash functions, database aggregation algorithms and
memory structures can be compared in future research projects.
h 3 h 2
e Al Since the interface options on the NEXY'S board do not support the achieved
write_enable throughput, a different FPGA with PCIE support can be used to test our implementation
clock : . e . . .
wwory pokiress I on realistic conditions. Furthermore, the performance of this project can be further
. o Distributed RAM improved by the implementation of a more complex floorplanning.
output «— data_out
clock
Figure-3
References
The project consists of three main pieces, hashing module, partial bloom filters and
distributed RAM modules. This pI'Oj ect 18 implemented on a NEXYS4 DDR FPGA. e Tong, D., & Prasanna, V. K. (2018). Sketch Acceleration on FPGA and its Applications in Network Anomaly Detection. /[EEE
Transactions on Parallel and Distributed Systems, 29(4), 929-942. do1:10.1109/tpds.2017.2766633
The project utilizes partial bloom filters (PBF) to achieve high performance which i1s e Lyons, M. J., & Brooks, D. (2009). The design of a bloom filter hardware accelerator for ultra low power systems. Proceedings of

the 14th ACM/IEEE International Symposium on Low Power Electronics and Design - ISLPED 09. doi:10.1145/1594233.1594330

a Commonly used technlque 11 StI'lIlg matChlng dCSlgl’lS. HaVIng multlp le bloom filters e Dharmapurikar, Sarang; Attig, Michael; and Lockwood, John. (2004). Design and Implementation of a String Matching System for

I‘esults in a 10W61’ false positive probablhty and less number Qf ClOCk Cycles to do a Network Intrusion Detection using FPGA-based Bloom Filters. A/l Computer Science and Engineering Research. Report Number:
. . . . WUCSE-2004-12 .
query op eration bU't 1t requires addltlonal memory space. e Fu, E., Ramakrishna, M., & Bahcekapili, E. (1997). Efficient Hardware Hashing Functions for High Performance Computers.

