
In this project, we have implemented the lattice-based digital signature scheme
Dilithium, which is a component of the CRYSTALS (Cryptographic Suite for Algebraic
Lattices). Cryptography involves usage of hard problems and this implementation uses
Learning with Errors (LWE) and Short Integer Solution (SIS) on Lattices. The hardness
of the problem allows it to be used in post-quantum cryptography, in other words, it
will be able to resist attacks coming from quantum computers.

Digital Signatures, one of the most crucial elements of the digital world, are a scheme
of cryptography that aims to provide verification of integrity, authentication and
non-repudiation on digital messages and documents.

ABSTRACT

Project Details

Implementation of a Post-Quantum
Cryptographic Algorithm

Aleyna GÜNEŞ/YILDIZ TECHNICAL UNIVERSITY
Arda YÜKSEL /BİLKENT UNIVERSITY
Emre Batuhan BALOĞLU/BİLKENT UNIVERSITY
Gülçin URAS/SABANCI UNIVERSITY

Our implementation consists of three main functions: Gen, Sign and Verify.

Gen function -which stands for key generation- generates public and secret keys in
order to be used in signature and verification protocols. It generates them by using
Uniform Distribution on NTT domain, with a random seed, which is randomly selected.

Sign function gets secret key and a message, which will be digitally signed. The
function maps the message and secret key to a binary string, which is 48 bytes. Then,
rejection sampling is performed on this 48 bytes in order to avoid dependency on secret
key; otherwise we may have a security leak. The function returns the digitally signed
message.

Verify function gets public key, the message in its first form and the digitally signed
message. Then the function performs a zero knowledge proof on these inputs in order to
confirm or reject if the message is really signed or not. The function returns a boolean
value which indicates this confirmation.

Cryptography based on the hardness of lattice problems is seen as a very promising
replacement of traditional cryptography after the eventual coming of quantum
computers.

In this project, we have implemented the digital signature scheme Dilithium, whose
security is based on the hardness of finding short vectors in lattices. We also used its
complete optimized implementation, as well as a detailed security analysis of the
underlying problems upon which it is based. This scheme was designed with the
following pseudocode:

Objectives

1- Implementing Dilithium Digital Signature Scheme with Python

2- Ensuring that algorithm works in constant time using discrete Uniform sampling

3- Improving the running time of the scheme with number theoretic transform (NTT).

References

● Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M., Schwabe, P., Stehlé, D.:
Crystals - Kyber: a CCA-secure module-lattice-based KEM. Cryptology ePrint Archive, Report
2017/634 (2017). http://eprint.iacr.org/2017/634

● Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé, D.:
CRYSTALS-Dilithium: a lattice-based digital signature scheme. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2018(1), 238–268 (2018). 554, 555, 557, 573, 575, 579, 580, 581, 582, 583

Results and Conclusions

In this project, Dilithium’s initial algorithm is implemented successfully. From the tests,
Digital Signature Scheme is observed to be working flawlessly. Due to lack of usage of
NTT, timing issue affected the progression. However, results are gathered correctly
regardless of the computational time issues.

From the tests that involve 1000 samples of the algorithm, constant time aspect is
proven to be correct. Following Results are obtained:

In conclusion, the implementation has achieved most of the objectives and issues
regarding the time and memory management can be further developed after the usage
of NTT in later stages of the projects.

Erkay SAVAŞ

Figure 3: Pseudocode of our Digital Signature Scheme

Average
Generation Time(s)

Average Signing
Cycle Time(s)

Average Verification
Time(s)

Average Signing
Cycle(s)

Average Run Time(s)

0.79 1.33 1.25 6.82 11.15

Figure 1: An overview of hard problems, LWE and SIS

Figure 2: An overview of signature and verification process

http://eprint.iacr.org/2017/634

