Rheological control enables printing of ultra lightweight cement composite for warmer climates

Faculty Member(s) Student(s) Özge Akbulut Mustafa Emre Karaçar Aleyna Beste Özhan

Sabancı. Universitesi

ABSTRACT

- > 3D printing has advantages such as customized production, reduced waste, and reduced lead-time of rapid prototype.
- > 3D printing of ultra-lightweight cement composite containing cenospheres, white cement, and silica fume aims at solving problems in the cement industry.
- > Cement mixture contains superplasticizers providing fluidity, cenosphere reducing thermal conductivity and silica fume sustaining strength. Meanwhile, typical ingredients for concrete remain unchanged, specifically cement and water.

PROJECT DETAILS

<u>The characterization of composite</u>

	w/b	Water	OPC	Silica Fume	Cenospheres	SP
		g	g	g	g	g
LCC1	0.4	30.5	45	0.93 (1.25%)	30	0.75 (1%)
LCC2	0.4	30.5	45	0.93(1.25%)	30	0.9 (1.2%)
LCC3	0.4	30.5	45	0.93(1.25%)	30	1.125 (1.5%)
LCC4	0.4	30.5	45	1.5 (2%)	30	0.9 (1.2%)
LCC5	0.4	30.5	45	2.25(3%)	30	0.9 (1.2%)

- > Rheological and structural characterization to obtain printable ink has been carried out to demonstrate the performance of this mixture in comparison to other available alternatives.
- As a result, the poly(carboxylate ether) based superplasticizer enables 3D printing of ultra lightweight cement composite and it offers a faster and more accurate construction with a decrease in the cost.

OBJECTIVES

Problems in cement industry:

- *CO*₂ emission in production
- Thermal conductivity •

Gökay Erbil

- Strength & durability
- Problems in workability

3D Printing offers:

- Faster and more accurate construction with potentially less waste
- A decrease in the amount of labor and consequently cost of labor
- Customization in design

➢ 3D printing of cement requires a special ink composition with modified rheological properties. To sustain the stability and to obtain printable material, chemical additives are used such as superplasticizer, cenosphere and silica fume.

Mix proportions of lightweight cement composites (LCC)

> This study aims at finding the most optimum percentages of ingredients (cenosphere, silica fume, SP, cement, water) for the cement mixture to obtain a printable cement ink.

PROJECT DETAILS

Materials

1) SUPERPLASTICIZERS : **Poly(carboxylate ether) derivatives**

How do they disperse cement particles?

- **Electrostatic repulsion**
- **Steric hinderance**

(Akhlaghi et al., 2017)

Aggregated cement particles, without superplasticizer.

✓ *Increase in stability*

As a result;

Dispersed cement particles, with superplasticizer

- increases slump flow diameter, confirming increase in fluidity and dispersion of molecules.
- > Electro kinetic characterization indicates that the zeta potential of cement particles decreased to negative values from $\sim +1$ mV confirming the adsorption of polymers
- > Decrease in viscosity with increasing shear rate is revealed by rheological characterization. This type of behavior is called shear-thinning. Adding more

shear rate (1/s) shear rate (1/s) **Compressive Strength Test** 25 The lightweight cement LCC1 - LCC2 composite cubes rested 7 LCC3 20 days in the environment LCC4 LCC5 with constant LCC6 temperature and humidity. After 7 days, the cubes are tested with UTM for the compressive strength test. **Deformation (%)**

Cement

2) Ordinary Portland

- Portland cement is the most common type of cement in general use around the world.
- White OPC was used to make the samples

 Hollow spheres with strong shell

3) Cenosphere

- Structural lightweight filler and workability enhancer
- Bulk filler
- Shrinkage reducer in cement grouts
- Decreased thermal conductivity
- Spherical particles finer than 1 µm
- High compressive strength

4) Silica Fume

- Increased toughness
- High electrical resistivity
- Low permeability and resistance to chemical attacks

silica fume increases viscosity.

- > Increasing the load capacity is greatly related to silica fume. After addition of a certain amount, the composite turns into brittle structure
- > An alternative superplasticizer added lightweight cement composite enables 3D printing of concrete which offers a faster and more accurate construction with a decrease in the cost while having greater load capability among 3D printing lightweight cement mixtures in the literature.

REFERENCES

Wong, K.V. and A. Hernandez, A Review of Additive Manufacturing. ISRN Mechanical Engineering, 2012. 2012: p. 10. Cesaretti, G., et al., Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. Acta Astronautica, 2014. 93: p. 430-450. van Zijl, G., et al., PROPERTIES OF 3D PRINTABLE CONCRETE. 2016 Rashad, A.M., An exploratory study on high-volume fly ash concrete incorporating silica fume subjected to thermal loads. Journal of Cleaner Production, 2015. 87: p. 735-744. Siddique, R., Utilization of silica fume in concrete: Review of hardened properties. Resources Conservation and Recycling, 2011. 55(11): p. 923-932. Barati, M., et al., *Recovery of silicon from silica fume*. Journal of Non-Crystalline Solids, 2011. **357**(1): p. 18-23. Goldman, A. and A. Bentur, Bond Effects in High-Strength Silica-Fume Concretes. Aci Materials Journal, 1989. 86(5): p. 440-447. Khayat, K.H. and P.C. Aitcin, *Silica Fume in Concrete - an Overview*. Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete, Vols 1 and 2, 1993. **132**: p. 835-872.