
Student(s) Faculty Member(s)

● Computation of a shortest synchronizing sequence of an automaton is an NP-Hard
problem. The longest possible shortest path and it’s structure is well known and
studied.

● There are various automatons having shorter synchronizing length than the
maximum but still are considered hard finite state machines.

● We used a Genetic Algorithm approach to generate hard finite state machines of
different sizes

ABSTRACT

PROJECT DETAILS

PROJECT DETAILS II

Constructing Slowly Synchronizing Automata Using
Genetic Algorithms

● For cross-over function we had; Node-Wise Mix, Alphabet-Wise Mix, Three-Way
Mix, and a random initialization. One of these crossover methods would be picked
at random for creating each new member of the population during the end of each
cycle. The probability of random initialization was the lowest and the probability of
Node-Wise Mix was the highest.

● With the Node-Wise Mix, we aimed at creating a new member by mixing the nodes
of randomly chosen automata. With the Alphabet-Wise Mix, on the other hand, a
new automaton was created by mixing the languages of P different automata where
P is the size of the alphabet. For example, if our alphabet was {a,b} we would take
the transitions from one automaton and b transitions from another automaton to
create the new one.

● The Three-Way Mix was just a simple mixing of 3 automata, where we take apart
from each automaton, we have to mention that for ease of computation we are
storing automata as N*P length arrays where N is the number of states and P is the
size of the alphabet, and create a new one.

Şeyma Selcan Magara
Yiğit Aras Tunalı

Hüsnü Yenigün
Kamer Kaya

● There was some number of crossover and mutation functions we have used but after
various tests, we have concluded that a couple of them were contributing to a higher
“fitness” score.

● The mutation functions we used were inspired by the results of (Podolak et al. 2017).
The best performing mutations were the ones that introduced self-loops to states and
the ones that balanced the in-degree values of states. Thus we used the aforementioned
mutations coupled with a random switch mutation, each with a separate probability so
that we would introduce randomness to our population.

OBJECTIVES

Using Genetic Algorithms to generate slowly synchronizing automata and further
improving this approach with different crossover and mutation functions.

● The approach we took in this research was to use the insights from (Podolak, Roman,
Szykula, & Zielinski, 2017) and apply them to our mutation and crossover functions
to construct a Genetic Algorithm scheme that would produce the desired slowly
synchronizing automata using a randomly generated population.

● A shortest-path algorithm is used to give each member of the population a “fitness”
level, which we use to rank the automata and eliminate the ones having low scores
throughout our genetic algorithm cycles.

● After some testing , we have decided not to mutate the highest scoring 2-5 automata
and keeping them as elites of the population. This decreased the number of cycles
required for improvement and eliminated the off chance of losing automatas with high
“fitness” level due to random mutations.

References

J. Černý, “Poznámka k homogénnym eksperimentom s konecnými automatami,” 1964.
I. Podolak, A. Roman, M. Szykula, and B. Zielinski, “A machine learning approach to
snychronization of automata,” Dec 2017.

G. Ananichev and Volkov, “Slowly synchronizing automata and digraphs,” 2010.
M. V. Berlinkov, “On the probability to be synchronizable.,” 2013.
D. Eppstein, “Reset sequences for monotonic automata,” Feb 1990

CONCLUSION

● Genetic algorithms can be used to generate slowly synchronizing automatas from
randomly generated machines although improvement of the algorithm is necessary.

● Shortest synchronizing word lenght increases as the number of genetic cycles
increases.

● As the size of our automatas increase the necessary numbers of cycles required for
increase in scores also rapidly increases

● Diversity of the population and selection of the elite group are the important issues
to be studied in order to improve the algorithm

● The location of the self-loop and the in-degree balancing mutations were all executed
with different probability values so that our population wouldn’t converge on an
unwanted result and would keep on increasing. The random switch had the lowest
probability of happening, whereas the self-loop mutation had the highest.

● A Deterministic Finite Automaton is a tuple A = (Q,δ,Σ,q,F) where
Q is a finite set of states
Σ is finite input alphabet
q is the initial state q∈Q
F is the final state set F ⊆ Q
δ is the transition function where δ : Q × Σ → Q;(q,σ) → δ(q,σ) ∈ Q

● For an automaton A = (Q,δ,Σ,q,F), a Synchronizing Sequence (SS) of A is an input
sequence w ∈ Σ* such that |δ(Q, w)| = 1.

