Vectorized Hashing for Sketches

Fatih Tasyaran, Kerem Yildirir,Hakan Ogan Alpar,Ali Osman Berk Supervised by Kamer Kaya

Sabanci University, Faculty of Engineering and Natural Sciences

. Sabanc1 .

Universitesi

Computer Science and Engineering

Introduction

Searching is one of the most important problems of computer science and it is used extensively in many
areas. Hash functions are one-way functions that map an input value to another value. Randomness is es-
sential in hashing because it is not desired to have multiple values resulting in the same hash value. Hashing
is also used in data structures where we use the hashed values as indexes of a table and keep the value in the

index of a table determined by hash function. This property allows us to do search, insert, delete operations
in O(1) time. [1]

1 Intel SIMD Instructions

SIMD is an instruction set available mostly on all current processors. In this project we used AVX (Ad-
vanced Vector Extension) and AVX2 instructions which are available for Intel processors since Sandy Bridge
architecture. With AVX instructions, it is possible to process 128 bits of data in registers on parallel, with
AV X2 this increased to 256 bits, meaning that we can do simple arithmetic and logical operations of 8 32-bit
integers at the same time.[2]

2 Hashing Strategies

As our hash functions, we used Multiply-Shift Hash, MurMurHash3 and Tabular Hash. Pseudocodes of
these functions can be found in Appendix B of our report. For each hash function, we have developed our
work under 2 models; Model 1, one data multiple hash, where we generate multiple hash values from a
single data sample, and Model 2, one data one hash, where we generate only one hash value using the same
random seed for a single data sample. For both models we implemented the hash functions with SIMD
instructions in simple arithmetic and logical operations. This way we were able to process 8 32-bit integers

in parallel.
X

Figure 1: [llustration of Model 1

2.1 Model 1

First model computes 8 hash values for a single given input. We apply the hash function using 8 different
random seeds and do all the operations using these random 8 values. We fill an array of size 8 with our input
value and apply the operation with 8 different random seeds. This model is especially useful for algorithms
like Count-Min Sketch where we keep multiple hash values for a single element.

2.2 Model 2

i=0.8

Figure 2: [llustration of Model 2

Second model computes 8 hash values for given 8 inputs, using the same random seed for all data points.
This approach could be seen as overriding the data length a register can hold, which is 256 bits, by carry-
ing 8 different 32-bit value to get 8 different 32-bit hash result by single instruction, in parallel. Using this
approach, the goal is to achieve 8 hash values in a time of 1 hash value without SIMD instructions. This
approach could be useful in applications like bloom filter, where every element needs one hash to check
membership to a set.

3 Tabular Hash SIMD

Tabulation hashing is a simple but relatively powerful hash function due to its randomness and efficiency
[3]. The algorithm is the following; Let p be the key to be hashed, m be the desired bit length of hash output.
M is a k * n matrix and used as a lookup table. Matrix has m bit random elements in every cell.

This algorithm returns a single hash value corresponding to a given single p (key). It is possible to construct
two models which are able to return multiple hash values fi(p)(¢ = 0,1, ) corresponding to a given a single
p and return a multiple hash values as a result of same hash function fy(pi)(¢ = 0, 1,2, 3.) corresponding to
given different ps (as a vector) by using SIMD instructions and vectors. The first model takes a single p
value as key, but uses a lookup table which has a different type. The algorithm returns a vector of m bit hash
values. Initialization of M is the difference between this algorithm and the original one. M contains vectors
of random m bits as elements. The speedup is a result of parallel XOR operations.

The other model uses same type of lookup table M But XOR and shifting operations are done by using SIMD
nstructions. Algorithm takes a vector of p values as different keys. The result is again a vector of different m
bit hash values.

function SIMPLE TABULATION HASH(p,m,M)
Given p,m, and initialized M(k*n)
hashvalue=0
for every i th most significant q bit of p, call it x do

hashvalue = hashvalue & M]i][x]
return hashvalue

function TABULAR HASH SIMD(p,m,M(k * n))
Given p, m, M(k * n)
hashvalue= [0,0,..0]
for every ith most significant q bit of p, call it x do

hashvalue = mm256 xor_si256(hashvalue, M[i][x])
return hashvalue

4 Experiment and Results

Set Size: 2*30 Tabular Hash Set Size: 225 Tabular Hash

1800000000 1800000000

1600000000 1600000000

1400000000 1400000000

1200000000 1200000000

1000000000

1000000000

200000000 &00000000

Throughputs
Throughputs

600000000 G600000000

400000000 400000000

200000000 200000000 —
0 0 7

Original Model1 SIMD Modell Original Model2 SIMD Model2 Original Model1 SIMD Modell Original Model2 SIMD Model2

(a) Tabular Hash with 2°° elements (b) Tabular Hash with 2%° elements

Set Size: 2*30 Multiply-Shift Hash Set Size: 2*25 Multiply-Shift Hash

900000000 200000000

800000000 800000000

700000000 700000000

600000000 600000000

500000000

500000000

400000000

400000000

Throughpuths
Throughputs

300000000

300000000

200000000
100000000 '

Original Model1 SIMD Modell Original Model2 SIMD Model2 Original Model1 SIMD Model1 Original Mode(2 SIMD Model2

200000000

100000000

0

=]

(c) Multiply Shift Hash with 2°" elements (d) Multiply Shift Hash with 2%° elements

Set Size: 2"30 Murmur Hash Set Size: 2*25 Murmur Hash

900000000 200000000

800000000 800000000

700000000 700000000

600000000 600000000

500000000

500000000

400000000

400000000

Throughputs
Throughputs

300000000

300000000

200000000

200000000

100000000
0o B

Original Model1 SIMD Modell Original Model2 SIMD Model2 Original Model1 SIMD Model1 Original Mode(2 SIMD Model2

100000000

0 S

(e) Murmur Hash with 2% elements (f) Murmur Hash with 2%° elements

Above figures demonstrate the throughputs achieved using SIMD instructions in each hashing function.
Main speed-up is due to shift and xor operations with SIMD instructions. Meaning Single Instruction Mul-
tiple Data streams, SIMD instructions provide data level parallelism by using single instruction to process
multiple data points in parallel. This omits individual fetch ,decode, execute cycles of data points and merges
them to one. This approach greatly improves process time in a data-intensive process. Such as hashing a
big set of values. As could be seen in the results, using SIMD instructions provides 3 to 6 times speed-up
except Tabular Hash. Which accesses a table with randomly filled integers randomly. The overhead with

2% elements caused by this randomness, since the number of elements are growing, accessing the table costs
more time.

5 Future Work

In the future, we plan to use our hash functions with SIMD instructions in probabilistic data structures and
algorithms such as HyperLoglLog, Bloom Filter and Count-Min Sketch. These algorithms are very useful in
estimating frequencies in large data streams. We believe that parallelizing the hashing operations in these
algorithms will provide great amount of speedup in frequency estimation.

5.1 HyperLogLog

HyperLogLog hashes every key to a bit stream and then approximates the distinct element number of the
hashed set by bit stream’s prefixes. To do this, HyperLogLog uses the same hash function for all keys to be
hashed. With this property, HyperLogLog is suitable for multiple data, one hash approach. Implementing
SIMD instructions on a HyperLoglLog could achieve great speedup as the HyperLogLog works in a one pass
over data manner, only counting hash values.

5.2 Bloom Filter

As mentioned earlier, bloom filter is one of the well suited applications for multiple data - one hash ap-
proach. To open up, bloom filter is a membership query which hashes keys to hash values and map them in
a bit vector. With a bloom filter employing a SIMD instruction including hash function, it would be possible
to answer 8 membership queries at once.

Figure 3: [llustration of an insertion of the element x to a bloom filter with k hash functions

5.3 Count-Min Sketch

Count-min sketch is a perfectly well suited application to use with one data multiple hash approach. Since
a count-min sketch is basically a 2 dimensional matrix, the rows of which are 1 dimensional hash tables. To
insert an element to a sketch (i.e. counting it) requires different hash values for each row of the count-min
sketch. By using SIMD instructions, calculating hash values for all rows a sketch at a time could achieve a
promising speed-up for the hashing phase of a count-min sketch.

Figure 4: Illustration of Count-Min Sketch

References

[1] S. r. Dahlgaard, M. Knudsen, and M. Thorup, “Practical hash functions for similarity estimation and di-
mensionality reduction,” in Advances in Neural Information Processing Systems 30 (I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.), pp. 6615-6625, Curran Asso-
ciates, Inc., 2017.

[2] H. Wang, P. Wu, L. G. Tanase, M. J. Serrano, and J. E. Moreira, “Simple, portable and fast simd intrin-

sic programming: Generic simd library,” in Proceedings of the 2014 Workshop on Programming Models for
SIMD/Vector Processing, WPMVP "14, (New York, NY, USA), pp. 9-16, ACM, 2014.

[3] M. Patrascu and M. Thorup, “The power of simple tabulation hashing,” CoRR, vol. abs/1011.5200, 2010.



