
Sabancı University Program for Undergraduate Research (PURE) Summer 2017-2018

SKETCHES ON SINGLE BOARD COMPUTERS

Ali Osman Berk Şapçı aliosmanberk@sabanciuniv.edu
Computer Science and Engineering, 2015

Egemen Ertuğrul egemenertugrul@yandex.com
Computer Science and Engineering

Hakan Ogan Alpar halpar@sabanciuniv.edu
Computer Science and Engineering, 2016

Kamer Kaya

Computer Science and Engineering

Abstract
Data sketches are probabilistic data structures with mathematically proven error bounds that store

information about the datasets using small amount of space using hash functions. They can

approximate some predefined questions (i.e. cardinality or frequency estimation) about big data with

high accuracy. We chose a data sketch called HyperLogLog and tested it with many different

configurations in order to find results that show least errors possible when estimating unique

elements in large genomic datasets.

Keywords: Big Data, Data Sketches, Bioinformatics, HyperLogLog, K-Mers

1 Introduction

Estimating the number of unique items in a dataset is called the count-distinct problem. A

naïve approach to this would be to keep track of each unique member encountered. However, it

becomes a challenge for memory and speed when a big data is processed; it isn’t always practical

to calculate the exact cardinality. Data sketches or probabilistic data structures are employed to

overcome the inefficient use of resources and approximate cardinalities or frequencies with

mathematically proven error bounds in a large datasets. These methods are sufficiently accurate

when some amount of error is acceptable. The lecture notes of Chakrabarti (2015) presented the

basics of the data sketches in a very concise fashion. Some of the most prominent data sketches in

the field are HyperLogLog (for cardinality estimation) and Count-Min (for frequency estimation).

In this work, we have focused on the count-distinct problem, and therefore HyperLogLog

algorithm. This algorithm was proposed by Flajolet et al. (2007) as an extention to LogLog

algorithm (Durand and Flajolet, 2003) which was derived from the Flajolet-Martin algorithm

(Flajolet and Martin, 1985). HyperLogLog is well-known for its low memory footprint and high

accuracy on large number of cardinalities. Heule et al. (2013) presented some improvements for

HyperLogLog in order to reduce memory requirements and increase accuracy for some cases of

cardinalities.

In the field of Bioinformatics, large genomic datasets are stored through DNA sequencing to

be processed later on. Such datasets could reach GBs or even TBs in size. In order to perform

ŞAPÇI, ERTUĞRUL, ALPAR, KAYA

 2

bioinformatics analysis, substrings or subsequences of length k called “k-mers” are read from DNA

sequences. It is important to determine the cardinalities or frequencies of certain k-mers in such

datasets, however, the computational resources might be limited or insufficient, such as in the single

board computers. In this case, data sketches can help immensely to overcome these constraints by

estimating with the cost of accuracy.

Zhang et al. (2014) presented the khmer software package for frequency estimation of k-mers

using Count-Min sketch and compared the performances of several k-mer counting packages with

their proposed model. Rizk et al. (2013) proposed an exact k-mer counting software called DSK

(disk streaming of k-mers) which requires a user-defined amount of memory and disk space. We

deployed DSK in our work and compared our approximated results with the exact results obtained

from DSK. Mohamadi and Birol (2017) proposed ntCard algorithm for estimating k-mer

frequencies using ntHash (Mohamadi et al., 2016). During our research, we deployed and analyzed

the ntCard algorithm to make speed and accuracy comparisons with the results obtained from our

model.

Just like in many other data sketches, a hash function is used in the HyperLogLog algorithm.

Since there are many different hash functions used in different conditions, we had to narrow down

our options to few non-cryptographic and considerably fast hash functions: Murmur3 Hash,

Tabulation Hash, City Hash and Spooky Hash. Instead of picking just one, we decided to compare

the results of HyperLogLog algorithm working with these hash functions.

The genomic datasets that we used to conduct our experiments with HyperLogLog were

obtained from UCSC Genome Database (Karolchik et al., 2003). We used the four datasets:

danRer11, triCas2, apICal1 and droEre2. aplCal (A. californica)1 has size 697Mb, Danrer (D. rerio)

as biggest data of our sample has size of 1.6Gb. DroEre2 (D. erecta) is 149 Mb, triCas2 (T.

casteneum) is 195Mb. Additionally, we have tested our model with 2 more datasets called est and

est1. Data sizes of est and est1 are 97Mb and 89Mb respectively.

For the sake of consistency, we conducted our experiments on a single HPC server with the

following specifications: 2 x Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz 16 cores running

Ubuntu 16.04.2 LTS.

In the rest of the report, we mention the HyperLogLog algorithm in detail, give the percent

error results for each hash function with the corresponding K and bucket bit values, present our

outcome from the results, and finally give our conclusion and present potential future work.

2 HyperLogLog on Genomic Data

Figure 1: ("How to count distinct?" 2015)

SKETCHES ON SINGLE BOARD COMPUTERS

 3

Our implementation of HyperLogLog offers different combinations of hash functions, register sizes

(or bucket bits) and k-mers. Program asks the user to choose a hash function between MurMur,

Tabulation, Spooky and City Hash, then expects number of bits to construct buckets and k number

to estimate cardinality of a particular k-mer size.

HyperLogLog operates as follows: after getting the number of bits (call it p) from user input,

construct an array of size 2p. Later, the dataset whose cardinality will be estimated is read to be

hashed. 32 or 64-bit value of a specific element that returned from hash function is used to

determine bucket index and probabilistic calculation of cardinality. First binary value m bits of

returned hash value are used to determine bucket index (see Figure 1). Number of leading zeros of

remained bits will be the value of that bucket index if it is the maximum value that have been seen

so far. Every bucket represents a subset of the initial datasets. Values of that buckets gives us a

probabilistic intuition to calculate estimation. Each leading zero encountered gives us to a reliable

conviction about doubling of number of distinct elements of that subset. Evaluating value of all

buckets together gives an accurate estimation.

Figure 2: ("HyperLogLog in Practice: Algorithmic Engineering of a State-of-the-Art

Cardinality Estimation Algorithm," 2017)

The formula seen above in Figure 2 gives us the final cardinality estimate(E) is produced from the

substream estimates as the normalized bias corrected harmonic mean where m is equal to
number of buckets(2p) M is the array of buckets and αm is the constant (also known as magic

number).

In bioinformatics, researchers need to work with different K-Mer sizes, and as K-Mer size increases

calculations become difficult, because of this we started with length 32 and worked our way up to

64. We had 6 different data, some were larger around 1GB and some were lower around 70 mb.

We tried to find a correlation between the hash functions and accuracy of the sketch. For this we

worked with different parameters, such as length of our data by using different data sizes. Working

with different bucket sizes, working with different K-Mers and finally changing the hashes

themselves.

Since the files were too large for us to find the cardinality on our own, we used a specific tool that

does that. Namely DSK. It is an exact counting tool that’s uses the disk to count and find the

cardinality. The question becomes then why anyone would use data sketches and not DSK for

cardinality counting, and the answer is because DSK can take a long time and requires a lot of

space.

We run our experiments by using 32-bit hash functions on k=32, 40, 48, 56 and 64, but 64-bit

versions of them also available. Following sections present result of experiments on 32 and 64 k-

mer. Other results and corresponding plots can be found in Appendices section.

ŞAPÇI, ERTUĞRUL, ALPAR, KAYA

 4

2.1 Percent Error Results with K-Mer Length 32

By looking at the tables with K-Mer length 32, we can see a lot of fluctuations in the accuracies of

hash functions.

Table 1:32 K-Mer Length City Hash Results

Table 2: 32 K-Mer Length Spooky Hash Results

Table 3: 32 K-Mer Length Murmur Hash Results

Table 4: 32 K-Mer Length Tabulation Hash Results

ERR

% 6 8 10 12 14 AVG STDEV

aplCal1 28,32903 -0,47752 0,32568 -2,42212 -2,69611 4,360159 13,31973

droEre2 26,08472 9,007605 1,537999 -1,8448 -1,86672 32,91881 10,52685

triCas2 -11,3154 -6,98836 3,641623 1,016213 1,644769 -2,40023 6,423955

est -11,1559 16,44484 23,94884 22,94607 22,82548 15,00186 14,92213

est1 14,80821 9,404392 13,07921 15,97663 15,39878 13,73344 2,651841

danRer -23,5561 -4,5972 4,481148 6,296602 5,481442 -2,37883 12,62444

Hash 1 (City)

% 6 8 10 12 14 AVG STDEV

aplCal1 -6,16254 -2,00645 -3,62256 -5,16196 -3,25258 -4,04122 1,635051

droEre2 4,120409 3,588149 -2,51519 -4,48429 -1,55365 -0,16891 3,826184

triCas2 -11,8826 -10,2646 -2,74888 -1,3645 1,601884 -4,93174 5,8509

est -10,4284 0,804696 12,94201 18,33887 22,61821 8,855077 13,5345

est1 20,01498 26,09756 16,50607 19,32839 16,80599 19,7506 3,864255

danRer -3,41148 13,75741 14,05929 6,6609 7,035217 7,620267 7,107877

Hash 2 (Spooky)

% 6 8 10 12 14 AVG STDEV

aplCal1 18,15211 9,009887 1,382242 -3,04857 -2,22886 4,653363 8,924408

droEre2 10,6928 3,861166 -3,92286 -1,46581 -2,67153 1,298752 6,030865

triCas2 5,122158 11,19662 4,075823 0,880328 1,417772 4,53854 4,1233

est -11,9336 9,145206 22,65226 23,08353 22,12962 13,0154 15,12232

est1 2,439208 11,3283 15,98586 16,92235 15,31637 12,39842 5,961988

danRer -2,84937 4,091096 11,73827 8,783472 7,06333 5,765358 5,556216

Hash 4 (Murmur)

% 6 8 10 12 14 AVG STDEV

aplCal1 -0,81926 -0,31408 -0,95929 -3,14298 -1,57649 -1,36242 1,092333

droEre2 -2,40244 0,668195 -6,52774 -1,18951 -1,8116 -2,25262 2,653063

triCas2 -19,5032 3,875637 0,598706 4,286389 2,253572 -1,69777 10,05973

est 15,23084 7,434267 17,38598 23,71222 22,20439 17,19354 6,456285

est1 18,61013 13,28527 12,86896 15,49735 13,87788 14,82792 2,338436

danRer -10,8732 1,804279 4,676993 7,592755 7,263135 2,092788 7,613489

Hash 5 (Tabulation)

SKETCHES ON SINGLE BOARD COMPUTERS

 5

We can see all hash functions perform better for larger amounts of bits taken. This means that we

can reach a more accurate result by setting up an array of 2^10 or 2^14 buckets to reach our optimal

accuracy with bits taken. Yet in the other parameters things are not as clear. Looking at the 10 bits

column of tables 1, 2, 3, 4 we can see City hash performs the best for “aplCal 1” and Tabulation

Hash for triCas2, they also seem to perform the best overall. Yet while all the hashes in this 10 bits

column perform around below 10% we have 2 datasets (est and est1) that has almost 20% error

rate. This at first led us to think our algorithm was not very accurate because 20% error is too high

for our expectations. This led us to test all these data with another, very sophisticated cardinality

counting algorithm for K-Mer counting called NTCard, and the results were better than

HyperLogLog, yet similar.

Table 5: NTCard Results for K-Mer Lengths 32, 40, 48, 56 and 64

By looking at Table 5, we can see even though ntCard performed really well for triCas2 and

Danrer11, it failed to perform accurately when it came to “est” and “est1”. This proved that the

problem was not with our HyperLogLog implementation. Unfortunately, we were not able to

obtain DSK results with the danRer11 dataset with K values of 48, 56 and 64, therefore the

percent error results do not exist for both ntCard and our model.

2.2 Percent Error Results with K-Mer Length 64

Table 6: 64 K-Mer Length City Hash Results

Table 7: 64 K-Mer Length Spooky Hash Results

ERR

% 6 8 10 12 14 AVG STDEV

aplCal1 28,32903 9,738833 1,081687 0,17514 -0,87483 4,360159 13,31973

droEre2 -12,6461 -0,30178 0,922904 -0,11187 -1,04152 -13,1783 5,044385

triCas2 16,57566 -2,22379 1,063134 0,069423 1,32826 3,362537 7,517709

est 57,97755 31,57177 23,95072 21,00053 21,82709 31,26553 15,50473

est1 24,54762 8,810022 16,38134 14,90347 15,7816 16,08481 5,615094

danRer

Hash 1 (City)

% 6 8 10 12 14 AVG STDEV

aplCal1 10,02768 -1,5066 -4,19433 -3,00216 -2,33141 -0,20136 5,802204

droEre2 6,591349 6,973159 -0,06165 -0,49737 -2,33192 2,134712 4,329402

triCas2 -6,87982 -0,15531 -1,22223 -1,06074 1,72694 -1,51823 3,218392

est -0,98121 19,00302 24,52954 25,07038 23,91395 18,30713 11,05012

est1 42,87334 33,15801 13,6138 12,93238 15,06248 23,528 13,68579

danRer

Hash 2 (Spooky)

ŞAPÇI, ERTUĞRUL, ALPAR, KAYA

 6

Table 8: 64 K-Mer Length Murmur Hash Results

Table 9: 64 K-Mer Length Tabulation Hash Results

As in the K=32 results, est and est1 results are still not reliable and therefore it is hard to make an

outcome. NtCard also gives high erroneous estimations about est and est1 datasets. Except for

Spooky Hash, all other hash functions give much more accurate results on K=64 than K=32. This

indicates that the conclusion of greater K length leads more accurate results. There is no error higher

than %2 when Tabulation Hash is performed and bucket bit number is 14. When the bucket bit is

6, poor results are likely to arise. Improvement of accuracy of Murmur can be seen in Table 8.

3 Conclusion and Future Work

Findings so far suggest that HyperLogLog data sketch for K-mer counting gives more accurate

results with bucket bits around 10 and a large distinct element size utilizing Tabulation and City

Hashes, yet there are other conditions to consider. Right now, even though our implementation of

HyperLogLog saves a lot of space, it runs sequentially, therefore it takes time to process the

datasets; parallelization is needed to bring our model to more desirable speeds. Also, in our

estimation formula, there is a correction constant that differs for each bucket size which might need

some tweaking. Although a file size of 1GB, like the ones we used might seem large at first, file

sizes can go much larger in the field of Bioinformatics. Tests need to be done on these types of

larger data to have more accurate results and to see which hash function performs the best for

HyperLogLog sketch.

References

Chakrabarti, A. (2015). Data stream algorithms. Computer Science, 49, 149.

Flajolet, P., Fusy, É., Gandouet, O., & Meunier, F. (2007, June). Hyperloglog: the analysis of a

near-optimal cardinality estimation algorithm. In Discrete Mathematics and Theoretical

Computer Science (pp. 137-156). Discrete Mathematics and Theoretical Computer Science.

Durand, M., & Flajolet, P. (2003, September). Loglog counting of large cardinalities. In European

Symposium on Algorithms (pp. 605-617). Springer, Berlin, Heidelberg.

% 6 8 10 12 14 AVG STDEV

aplCal1 -0,7054 0,067993 -2,07026 -0,90465 -0,7054 -0,86354 0,770653

droEre2 6,591349 5,772626 -5,32064 -2,24536 -2,02832 0,553931 5,308008

triCas2 44,81134 20,39261 4,395721 1,134941 1,038187 14,35456 18,81048

est 23,28877 16,93833 20,65375 23,33741 23,97426 21,6385 2,920906

est1 6,996839 23,62446 15,80245 16,66608 15,67019 15,752 5,90494

danRer

Hash 3 (Murmur)

% 6 8 10 12 14 AVG STDEV

aplCal1 -1,30217 9,532488 -1,5017 -1,32744 -1,70005 0,740226 4,917613

droEre2 -17,1448 -12,1746 -4,26843 -0,41496 -0,8145 -6,96347 7,395477

triCas2 3,139113 6,0111 3,121772 1,547118 1,236432 3,011107 1,892176

est 29,68183 21,32712 24,4255 21,82873 26,39814 24,73226 3,442129

est1 26,64757 4,340913 18,38749 14,22262 14,65305 15,65033 8,052439

danRer

Hash 4(Tabulation)

SKETCHES ON SINGLE BOARD COMPUTERS

 7

Flajolet, P., & Martin, G. N. (1985). Probabilistic counting algorithms for data base

applications. Journal of computer and system sciences, 31(2), 182-209.

Heule, S., Nunkesser, M., & Hall, A. (2013, March). HyperLogLog in practice: algorithmic

engineering of a state of the art cardinality estimation algorithm. In Proceedings of the 16th

International Conference on Extending Database Technology (pp. 683-692). ACM.

Zhang, Q., Pell, J., Canino-Koning, R., Howe, A. C., & Brown, C. T. (2014). These are not the k-

mers you are looking for: efficient online k-mer counting using a probabilistic data

structure. PloS one, 9(7), e101271.

Rizk, G., Lavenier, D., & Chikhi, R. (2013). DSK: k-mer counting with very low memory

usage. Bioinformatics, 29(5), 652-653.

Mohamadi, H., Khan, H., & Birol, I. (2017). ntCard: a streaming algorithm for cardinality

estimation in genomics data. Bioinformatics, 33(9), 1324-1330.

Mohamadi, H., Chu, J., Vandervalk, B. P., & Birol, I. (2016). ntHash: recursive nucleotide

hashing. Bioinformatics, 32(22), 3492-3494.

Karolchik, D., Baertsch, R., Diekhans, M., Furey, T. S., Hinrichs, A., Lu, Y. T., ... & Weber, R. J.

(2003). The UCSC genome browser database. Nucleic acids research, 31(1), 51-54.

How to count distinct? (2015, April 29). Retrieved from http://www.itshared.org/2015/04/how-

to-count-distinct.html

HyperLogLog in Practice: Algorithmic Engineering of a State of the Art Cardinality Estimation

Algorithm. (2017, July 27). Retrieved from

https://blog.acolyer.org/2016/03/17/hyperloglog-in-practice-algorithmic-engineering-of-

a-state-of-the-art-cardinality-estimation-algorithm/

ŞAPÇI, ERTUĞRUL, ALPAR, KAYA

 8

Appendices

Appendix A

Error Results with K-Mer Length 40

Error Results with K-Mer Length 48

Error Results with K-Mer Length 56

ERR

% 6 8 10 12 14 AVG STDEV

aplCal1 28.329031 3.810239 -3.20215 -0.43761 -1.33368 4.360159 13.31973

droEre2 9.83139 6.617879 5.297024 1.503681 -1.16117 22.0888 3.86102

triCas2 -15.96679 3.33533 7.741705 4.51567 2.593122 0.443808 9.382529

est -6.201545 8.24261 18.21004 24.30403 22.08291 13.32761 12.53216

est1 -14.3671 11.91766 10.22176 13.81715 16.20329 7.558552 12.45723

danRer 4.8578846 12.58754 5.718625 3.807725 4.840399 6.362434 3.545179

Hash 1 (City)

% 6 8 10 12 14 AVG STDEV

aplCal1 7.407527 5.92531 2.9053829 1.013237 -0.70755 3.308781 3.361886

droEre2 -13.563 -6.45241 -3.082123 -2.1849 -0.88737 -5.23396 5.091102

triCas2 5.761526 -6.40233 0.1031843 3.010521 0.732663 0.641113 4.520525

est 8.054934 17.53015 25.255193 26.90899 23.7332 20.29649 7.707679

est1 11.58477 7.487913 14.843526 13.4085 16.96096 12.85713 3.589518

danRer -10.7519 -4.6079 6.3590817 6.194416 6.499414 0.738615 7.986868

Hash 2 (Spooky)

% 6 8 10 12 14 AVG STDEV

aplCal1 13.86492 -7.66097 -1.17478 -3.30619 -3.654601 -0.38632 8.304327

droEre2 -12.6859 -7.34543 -6.49402 -3.63491 -2.790242 -6.5901 3.902259

triCas2 8.846595 -4.16029 3.705522 3.109671 1.2542494 2.551149 4.690485

est 29.11144 31.49208 22.81277 22.7882 23.077415 25.85638 4.145975

est1 19.26702 7.413903 16.26557 13.61818 14.513049 14.21555 4.371148

danRer 9.112314 10.31699 7.754392 4.966647 5.7694932 7.583967 2.23478

Hash 4 (Murmur)

% 6 8 10 12 14 AVG STDEV

aplCal1 13.04263 -16.6824 -5.004373 -3.45269 -2.65846 -2.95105 10.59363

droEre2 0.100119 5.314277 -0.661269 -2.23048 -0.11461 0.481606 2.851198

triCas2 19.47696 0.879472 -1.003382 4.196165 2.511616 5.212167 8.203884

est 41.38791 29.35921 19.959875 19.76241 22.1542 26.52472 9.177095

est1 19.26702 7.413903 19.175086 13.98109 13.49226 14.66587 4.897473

danRer 24.07031 1.914857 2.1477857 5.134403 4.502338 7.553939 9.34054

Hash 5 (Tabulation)

ERR

% 6 8 10 12 14 AVG STDEV

aplCal1 28.32903 6.516474 -5.33696 -4.82313 -3.1649 4.360159 13.31973

droEre2 13.74628 1.535539 -1.37512 -0.75808 -1.59332 11.5553 5.824388

triCas2 -9.34023 -3.95298 3.438084 -1.30559 0.880688 -2.056 4.899762

est 16.95189 18.17088 28.86127 25.40778 22.75572 22.42951 4.961961

est1 31.98969 14.91522 18.19513 16.81133 16.74034 19.73034 6.951525

Hash 1 (City)

% 6 8 10 12 14 AVG STDEV

aplCal1 14.36503 2.447826 -2.65071 -3.94363 -2.804813 1.48274 7.612471

droEre2 20.83286 7.941589 3.756321 2.006307 0.1154852 6.930512 8.292547

triCas2 -12.5275 -9.68022 5.613552 1.042695 1.6761489 -2.77506 7.866835

est 5.504996 24.77914 20.18581 23.03873 22.155735 19.13288 7.795856

est1 24.35485 21.81703 18.66445 14.06185 14.744158 18.72847 4.439919

Hash 2 (Spooky)

% 6 8 10 12 14 AVG STDEV

aplCal1 9.783287 -9.08781 -2.9997 -2.26221 -2.45121 -1.40353 6.866145

droEre2 -19.0768 3.702389 -0.45869 -0.85789 -1.85023 -3.70825 8.849394

triCas2 0.591081 -3.9533 -0.78764 1.096613 1.235561 -0.36354 2.160249

est 28.50798 18.96085 22.20584 22.62528 21.64259 22.78851 3.50152

est1 -4.2162 10.74451 11.74423 14.52561 15.28486 9.616602 7.958847

Hash 4 (Murmur)

% 6 8 10 12 14 AVG STDEV

aplCal1 15.48912 -13.3996 -4.34403 -0.57503 -0.99549 -0.765 10.44901

droEre2 -12.9192 6.200001 -1.18178 -0.62154 -2.18053 -2.14061 6.873362

triCas2 11.94478 -7.16997 -0.72122 2.096881 0.927842 1.415662 6.889188

est 17.51242 20.24594 22.85868 20.61505 22.26464 20.69935 2.090579

est1 -2.21572 15.22107 16.98623 11.22328 14.98483 11.23994 7.809427

Hash 5 (Tabulation)

SKETCHES ON SINGLE BOARD COMPUTERS

 9

Appendix B

Bucket Bit – Absolute Error Plots with K-Mer Length 32

Bucket Bit – Absolute Error Plots with K-Mer Length 40

ERR

% 6 8 10 12 14 AVG STDEV

aplCal1 28.32903 8.382565 2.0618745 -1.68298 -1.18425 4.360159 13.31973

droEre2 -6.72477 0.105947 4.7817782 -0.46809 -1.8078 -4.11294 3.693323

triCas2 16.58613 12.81609 3.538529 3.979924 2.655337 7.9152 6.354358

est 43.02778 27.35328 23.862398 24.72415 23.59436 28.51239 8.249247

est1 46.61255 27.46148 15.402295 15.61322 15.8336 24.18463 13.54703

Hash 1 (City)

% 6 8 10 12 14 AVG STDEV

aplCal1 10.44332 1.824752 -1.43371 -4.48699 -0.6393 1.141613 5.667307

droEre2 17.8682 -0.32941 3.163984 -0.07309 -0.38464 4.04901 7.867224

triCas2 28.86708 4.109925 -0.93368 2.519895 0.782926 7.06923 12.3305

est 11.12468 13.06368 22.92657 23.07438 22.50969 18.5398 5.927438

est1 33.0446 19.90242 16.14578 15.39513 15.53324 20.00423 7.519689

Hash 2 (Spooky)

% 6 8 10 12 14 AVG STDEV

aplCal1 4.530359 4.944588 -1.00691 -2.6 -2.81763 0.610082 3.834872

droEre2 11.28798 5.418142 0.779537 -2.31269 -2.71764 2.491067 5.89681

triCas2 9.985381 1.611973 1.148735 2.712825 2.381992 3.568181 3.640041

est 8.630353 9.745224 25.90477 24.36541 24.34799 18.59875 8.623222

est1 14.30599 4.738795 10.76795 15.38187 13.81736 11.80239 4.304218

Hash 4 (Murmur)

% 6 8 10 12 14 AVG STDEV

aplCal1 0.989402 -9.40619 1.814707 -4.603141 -0.80043 -2.40113 4.630091

droEre2 13.13029 -23.7305 0.525524 0.3173075 -2.47667 -2.4468 13.34274

triCas2 38.88303 1.21936 1.343621 2.8215189 1.288516 9.11121 16.65633

est 28.43838 22.6921 24.07895 23.186344 23.70329 24.41981 2.306779

est1 -4.72838 19.05102 14.59442 12.719319 14.39384 11.20605 9.21117

Hash 5 (Tabulation)

0

5

10

15

20

25

30

6 8 10 12 14

Hash 1 (City)

triCas2 aplCal1 droEre2 danRer

0

2

4

6

8

10

12

14

16

6 8 10 12 14

Hash 2 (Spooky)

triCas2 aplCal1 droEre2 danRer

0

2

4

6

8

10

12

14

16

18

20

6 8 10 12 14

Hash 4 (Murmur)

triCas2 aplCal1 droEre2 danRer

0

5

10

15

20

25

6 8 10 12 14

Hash 5 (Tabulation)

triCas2 aplCal1 droEre2 danRer

ŞAPÇI, ERTUĞRUL, ALPAR, KAYA

 10

Bucket Bit – Absolute Error Plots with K-Mer Length 48

Bucket Bit – Absolute Error Plots with K-Mer Length 56

0

10

20

30

40

50

60

70

6 8 10 12 14

Hash 1 (City)

triCas2 aplCal1 droEre2 danRer

0

2

4

6

8

10

12

14

16

6 8 10 12 14

Hash 2 (Spooky)

triCas2 aplCal1 droEre2 danRer

0

2

4

6

8

10

12

14

16

6 8 10 12 14

Hash 4 (Murmur)

triCas2 aplCal1 droEre2 danRer

0

5

10

15

20

25

30

6 8 10 12 14

Hash 5 (Tabulation)

triCas2 aplCal1 droEre2 danRer

0

5

10

15

20

25

30

6 8 10 12 14

Hash 1 (City)

triCas2 aplCal1 droEre2

0

5

10

15

20

25

6 8 10 12 14

Hash 2 (Spooky)

triCas2 aplCal1 droEre2

0

5

10

15

20

25

6 8 10 12 14

Hash 4 (Murmur)

triCas2 aplCal1 droEre2

0

2

4

6

8

10

12

14

16

18

6 8 10 12 14

Hash 5 (Tabulation)

triCas2 aplCal1 droEre2

SKETCHES ON SINGLE BOARD COMPUTERS

 11

Bucket Bit – Absolute Error Plots with K-Mer Length 64

0

5

10

15

20

25

30

6 8 10 12 14

Hash 1 (City)

triCas2 aplCal1 droEre2

0

5

10

15

20

25

30

35

6 8 10 12 14

Hash 2 (Spooky)

triCas2 aplCal1 droEre2

0

2

4

6

8

10

12

6 8 10 12 14

Hash 4 (Murmur)

triCas2 aplCal1 droEre2

0

5

10

15

20

25

30

35

40

45

6 8 10 12 14

Hash 5 (Tabulation)

triCas2 aplCal1 droEre2

0

5

10

15

20

25

30

6 8 10 12 14

Hash 1 (City)

triCas2 aplCal1 droEre2

0

2

4

6

8

10

12

6 8 10 12 14

Hash 2 (Spooky)

triCas2 aplCal1 droEre2

0

5

10

15

20

25

30

35

40

45

50

6 8 10 12 14

Hash 4 (Murmur)

triCas2 aplCal1 droEre2

0

2

4

6

8

10

12

14

16

18

20

6 8 10 12 14

Hash 5 (Tabulation)

triCas2 aplCal1 droEre2

