

A STUDY ON AUTOMATA AND FINITE STATE MACHINES

Ege Sorguç sorguc.ege@metu.edu.tr
Computer Science and Engineering

Yuşa Emek myusa@sabanciuniv.edu
Computer Science and Engineering

Berk Çirişçi

Computer Science and Engineering berkcirisci@sabanciuniv.edu

Project Supervisors:

Hüsnü Yenigün

Computer Science and Engineering

Kamer Kaya

 Computer Science and Engineering

Abstract

Computing a shortest synchronizing sequence of an automaton is an NP-Hard problem. There

are well-known heuristics to find short synchronizing sequences. Finding a shortest homing sequence

is also an NP-Hard problem. Unlike existing heuristics to find synchronizing sequences, homing

heuristics are not widely studied. In this paper, we discover a relation between synchronizing and

homing sequences by creating an automaton called homing automaton. By applying synchronizing

heuristics on this automaton we get short homing sequences. Furthermore, we adapt some of the

synchronizing heuristics to construct homing sequences.

Keywords: FSM, Automaton, Synchronizing, Homing

1. Introduction

A Deterministic Finite Automaton (DFA) (or simply an automaton) is a triple A = (S, X, δ) where S is a

finite set of states, X is a finite set of alphabet (or input) symbols, and δ : S × X → S is a transition

function. When δ is a complete (resp. partial) function, A is called complete (resp. partial). In this

work we only consider complete DFAs unless stated otherwise. A Deterministic Finite State Machine

(FSM) is a tuple M = (S, X, Y, δ, λ) where S is a finite set of states, X is a finite set of alphabet (or input)

symbols, Y is a finite set of output symbols, δ : S × X → S is a transition function, and λ : S × X → Y is

an output function. In this work, we always consider complete FSMs, which means the functions δ

and λ are total.

Sabancı University Program for Undergraduate Students (PURE) Summer 2017-2018

 An automaton and an FSM can be visualized as a graph, where the states correspond to the

nodes and the transitions correspond to the edges of the graph. For an automaton the edges of the

graph are labeled by input symbols, whereas for an FSM the edges are labeled by an input and an

output symbol. In Figure 1 and Figure 2, an example automaton and an example FSM are given.

An input sequence �̅� ∈ X* is a concatenation of zero or more input symbols. More formally,

an input sequence �̅� =𝑥1, 𝑥2 . . . 𝑥𝑘 for some k ≥ 0 where 𝑥1, 𝑥2 . . . 𝑥𝑘 ∈ Σ. As can be seen from the

definition, an input sequence may have no symbols; in this case it is called the empty sequence and

denoted by 𝜖.

For both automata and FSMs, the transition function δ is extended to input sequences as

follows. For a state s ∈ S, an input sequence �̅� ∈ X* and an input symbol x ∈ X, we let δ̅ (s, 𝜖) = s, δ̅ (s,

x�̅�) = δ̅ (δ(s, x), �̅�). Similarly, the output function of FSMs is extended to input sequences as follows: λ̅

(s, 𝜖) = 𝜖, λ̅(s, x�̅�) = λ(s, x) λ̅(δ(s, x), �̅�). By abusing the notation we will continue using the symbols δ

and λ for δ̅ and λ̅, respectively.

Finally for both automata and FSMs, the transition function δ is extended to a set of states as follows.

For a set of states S’ ⊆ S and an input sequence �̅� ∈ X* , δ(S’ , �̅�)= {δ(s, �̅�) | s ∈ S’}. An FSM M = (S, X,

Y, δ, λ) is said to be minimal if for any two different states 𝑠𝑖, 𝑠𝑖 ∈ S, there exists an input sequence �̅�

∈ Σ* such that λ(𝑠𝑖, �̅�)≠ λ(𝑠𝑗, �̅�).

Definition 1. For an FSM M = (S, X, Y, δ, λ), a Homing Sequence (HS) of M is an input

sequence H̅ ∈ X* such that for all states s, s’ ∈ S, δ(s, H̅) ≠ δ(s’ , H̅) ⇒ λ(s, H̅) ≠ λ(s’ , H̅).

Intuitively, an HS H̅ is an input sequence such that for all states output sequence to H̅

uniquely identifies the final state. For FSM 𝑀0 given in Figure 2 aa is an HS. If M is minimal, then

there certainly exists an HS for M [2]. If M is not minimal, there may also be an HS for M.

Furthermore, when M is not minimal, it is always possible to find an equivalent minimal FSM M’ such

that M’ is minimal [2].

Definition 2. For an automaton A = (S, X, δ), a Synchronizing Sequence (SS) of A is an input

sequence R̅∈ X* such that |δ(S, R̅)| = 1.

A synchronizing sequence is also called a reset sequence in the literature. An automaton

does not necessarily have an SS. It is known that the existence of an SS for an automaton can be

checked in polynomial time [1]

For a set of states C ⊆ S let 𝐶2 = {{s, s’}/ s,s’∈ 𝐶2} be the set of multisets with cardinality 2 with

elements from C, i.e 𝐶2 is the set of all subsets of C with cardinality 2, where repetition is allowed.

An element {s,s’} ∈ 𝐶2 is called pair. Furthermore it is called singleton pair (or an s-pair or simply a

singleton) if s= s’, otherwise it is called different pair (or a d-pair). The set s-pairs and d-pairs denoted

in 𝐶2 denoted by 𝐶𝑑
2 and 𝐶𝑠

2respectively. A sequence w is said to be merging sequence for a pair {s,s’}

∈ 𝑆2 if δ({s,s’}, w) is a singleton. Note that for a s-pair, every sequence (including ɛ) is a merging

sequence.

2.1 The Relation between Homing Sequences and Synchronizing Sequences

In this section, we will derive an automaton AM from a given FSM M. We call 𝐴𝑀 the the homing

automaton of M. The construction of 𝐴𝑀 from M is similar to the construction of product automaton

(as exists in the literature) from a given automaton to analyse the existence of and to find

synchronizing sequences.

Definition 3. Let M = (S, X, Y, δ, λ) be an FSM. The homing automaton (HA) 𝐴𝑀 of M is an automaton

𝐴𝑀 = (𝑆𝐴, X, δ𝐴) which is constructed as follows:

The set 𝑆𝐴 consists of all 2-element subsets of S and an extra state q* . Formally we have 𝑆𝐴 = {{s, s’} |

s, s’ ∈ S ∧ s ≠ s’} ∪ {q*}.

- For a state q ∈ 𝑆𝐴 and an input symbol x ∈ X, the transition function δ𝐴 is defined as follows:

As an example, the HA for FSM M0 given in Figure 2 is depicted in Figure 3.

Lemma 1. Let M = (S, X, Y, δ, λ) be an FSM, 𝐴𝑀 = (δ𝐴, X, δ𝐴) be the HA of M. For an input sequence �̅�∈

X* , (λ(𝑠𝑖 , �̅�) ≠ λ(𝑠𝑗 , �̅�)) ∨ (δ(𝑠𝑖 , �̅�)= δ(𝑠𝑗 , �̅�)) ⇐⇒ δA({𝑠𝑖 , 𝑠𝑗}, �̅�)= q*.

 Proof. Let �̅� = �̅�’x�̅�’’ where �̅�’ , �̅�’’ ∈ X* and x ∈ X such that (δ(𝑠𝑖 , �̅�′) ≠ δ(𝑠𝑖𝑗 , �̅� ‘)) ∧ (λ(𝑠𝑖 , �̅�′) = λ(𝑠𝑗 ,

�̅�′)). So the new state according to δA is q’ = {δ(𝑠𝑖, �̅�′), δ(𝑠𝑗 , �̅�′) }. If λ(𝑠𝑖 , �̅�′x) ≠ λ(𝑠𝑗 , �̅�′ x) then δA(q’

, x) = q* and δA(q* , �̅�′’) = q* . If λ(𝑠𝑖 , �̅�′x) = λ(𝑠𝑗 , �̅�′ x) but δ(𝑠𝑖 , �̅�′x) = δ(𝑠𝑗 , �̅�′x) then δA(q’ , x) = q*

and δA(q* , �̅�′’) = q* .

A study on Automata and Finite State Machines

For the reverse direction, again writing �̅�′ = �̅�′x�̅�′’ where �̅�′, �̅�′’∈ X* and x ∈ X such that

δA({𝑠𝑖 , 𝑠𝑗}, �̅�′) = {𝑠𝑖′ , 𝑠𝑗′} for some states 𝑠𝑖′ , 𝑠𝑗′ and δA({𝑠𝑖 , 𝑠𝑗}, �̅�′x) = q* . This means that λ(𝑠𝑖 , �̅�′)

= λ(𝑠𝑗 , �̅�′) and δ(𝑠𝑖 , �̅�′) ≠ δ(𝑠𝑗 , �̅�′) but after consuming input x, λ(𝑠𝑖 , �̅�′x) ≠ λ(𝑠𝑗 , �̅�′x) where x is the

first input which forces FSM to produce different outputs. Or δ(𝑠𝑖 , �̅�′𝑥) = δ(𝑠𝑗 , �̅�′x), in this

case x is the merging input. This proves that (λ(𝑠𝑖 , �̅�) ≠ λ(𝑠𝑗 , �̅�)) ∨ (δ(𝑠𝑖 , �̅�) = δ(𝑠𝑖, �̅�)).

We can now give the following theorem that states the relation between HSs of M and SSs of

𝐴𝑀. Theorem 1. Let M = (S, X, Y, δ, λ) be an FSM and 𝐴𝑀 = (δ𝐴, X, δ𝐴) be the HA of M. An input

sequence �̅� ∈ X* is an HS for M iff �̅� is an SS for 𝐴𝑀.

Proof. If �̅� is an HS of M, for any two states si and sj in M, λ(𝑠𝑖 , �̅�) ≠ λ(𝑠𝑗 , �̅�) or δ(𝑠𝑖 , �̅�) = δ(𝑠𝑗 , �̅�).

Lemma 1 states that δA({𝑠𝑖 , 𝑠𝑗 }, �̅�) = q* for any {𝑠𝑖 , 𝑠𝑗}∈ SA. For q* , δA(q* , �̅�) = q* . Hence �̅� is an

SS for 𝐴𝑀.

 If �̅� is an SS for AM, first note that δA(q* , �̅�) = q* . For any state of AM of the form {𝑠𝑖 , 𝑠𝑗 },

we must also have δA({𝑠𝑖 , 𝑠𝑗 }, �̅�) = q* . From the other direction of Lemma 1, we have for any pair

of states λ(𝑠𝑖 , �̅�) ≠ λ(𝑠𝑗 , �̅�) or δ(𝑠𝑖 , �̅�) = δ(𝑠𝑗 , �̅�).

2.2 Synchronizing Heuristics for Homing Automaton

Although finding a shortest SS is known to be an NP-Hard problem, finding a short SS by applying

heuristics is studied widely. As shown in Theorem 1, finding an HS for an FSM M is equivalent to

finding an SS for its corresponding homing automaton 𝐴𝑀. Based on Theorem 1, we can apply widely

known SS heuristics to 𝐴𝑀 in order to find a possibly short HS for FSM M.

Sorguç, Emek, Çirişci

Among such SS heuristics, Greedy is one of the fastest and the earliest that appeared in the

literature [1]. Other than Greedy heuristic, SynchroP is one of the best known heuristics in terms of

finding short SSs [3]. Although, SynchroP is good in terms of length, it is slow compared to

Greedy since it performs more analysis on the automaton.

Both Greedy and SynchroP heuristics have two phases. Phase 1 is common in these heuristics

and given as Algorithm 1 below. In Phase 1, a shortest merging word τ{i,j}=for each {i, j} ∈ 𝑆2 is

computed by using a breadth first search. Note that τ{i,j}= is not unique.

Algorithm 1 performs a breadth first search(BFS), and therefore constructs a BFS forest,

rooted at s-pairs {i, i} ∈ 𝑆𝑠
2, where these s-pair nodes are the nodes at level 0 of the BFS forest. A d-

pair {i, j} appears at level k of the BFS forest if |τ{i,j}| = k. When the automaton has a synchronizing

sequence, each d-pair should have a merging word since it is a necessary condition for synchronizing

automata. . It requires Ω(𝑛2) time since each {i, i} ∈ 𝑆𝑠
2 pushed to Q exactly once.

Next phase of these heuristics differ from the selection criterion for the current d-pair to be

merged. Greedy’s Phase 2 (given as Algorithm 2 below) constructs a synchronizing sequence by using

the information from Phase 1. It keeps track of a set of active states C, which is the set of states that

are not merged yet. A d-pair {i, j} that has shortest merging word in the active states is selected to be

merged and current(active) state set is updated by applying τ{i,j}. This process will iterate until all

states are merged so that C becomes singleton.

Similar to the second phase of Greedy, the second phase of SynchroP also constructs a

synchronizing sequence iteratively. It also keeps track of a set of active states C of states. In each

iteration, the cardinality of C is reduced at least by one since τ{i,j} of a selected d-pair {i, j} is applied

A Study on Automata and Finite State Machines

to C so that at least {i, j} is merged in each iteration. Rather than selecting the state with the

shortest merging word, it uses a special cost function to determine the d-pair to be merged. For a

set of states C ⊂ S, let the cost ϕ(C) of C be defined as :

ϕ(C) = ∑ |τ{i,j}|i,j∈C

ϕ(C) is a heuristic indication of how hard is to bring set C to a singleton. The intuition here is

that, the larger the cost ϕ(C) is, the longer a synchronizing sequence would be required to bring C to

a singleton set. Based on this cost function, the second phase of SynchroP is given in Algorithm 3.

2.3 Adaptation of Synchronizing Heuristics to Homing Sequences

Taking our cue from the synchronizing heuristics that were mentioned in the previous section, we

have implemented various homing heuristics. We experimented with three of these heuristics, Fast

HS, Greedy HS and SynchroP HS.

Phase 1 is common in these heuristics and given as Algorithm 2. In Phase 1, a shortest

homing word τ{i,j} for each {i, j} ∈ 𝑆2 is computed by using a breadth first search. Generation of the

BFS forest is very similar to what is done in SS heuristics except that a d-pair {i, j} that gives different

outputs for its states, λ(i, x) ≠ λ(j, x) for an input symbol x ∈ Σ, is located at level 1 of the forest by

setting τi,j=x.

Sorguç, Emek, Çirişci

A Study on Automata and Finite State Machines

Similar to the synchronizing heuristics, Phase 2 updates the current state set after applying the

homing word for the selected d-pair {i, j}. But rather than proceeding with all d-pairs, it divides set of

states into blocks such that each block contains the states that give the same output after applying

τ{i,j} and selects the d-pair from these blocks. It iterates until there are no more blocks to home.

criterion differs according to the heuristic used.

Phase 2 of Fast HS does not perform a search in the blocks(set of pairs) for a d-pair. It selects

a random pair from the current pair set to home without losing time so that it gets rid of the iterative

pair selection process.

Unlike Fast HS, in Phase 2 of Greedy HS the d-pair to be selected is searched in the blocks and

the d-pair that has a shortest homing word is selected.

SynchroP HS performs a deeper analysis on the automaton. It iterates through the all pairs in

the blocks and determines the d-pair to be homed according to the ϕ cost.

Sorguç, Emek, Çirişci

3. Experiments and Conclusion

All the algorithms are implemented in C++ and the automata used for these experiments are

randomly generated. Our experiments are conducted with 32, 64 state sizes and 2, 4, 8 input and

output sizes. For each input, output and state size combinations, we performed experiments on 100

randomly generated automata. Times elapsed while performing these algorithms are measured in

terms of microseconds.

 We implemented 2 SS heuristics which find SSs on the homing automaton(equivalent to HSs

on the FSM). These are Greedy and SynchroP heuristics. After creating the HA 𝐴𝑀 explained in

Section 3, we applied our implemented SS heuristics on the 𝐴𝑀. As can be seen from the column HA

Time in Table 1, creation of the homing automaton is a time consuming process.

In order to enhance the time performance, we adapted these SS heuristics to homing

sequences so that we can work on the initial FSM 𝑀0 without converting it to 𝐴𝑀. We implemented 3

HS heuristics which find HSs on the FSM. These are Greedy HS, SynchroP HS and Fast HS heuristics as

explained in Section 5.

 In all experiments we measured time to create a BFS forest which is Phase 1 of heuristics and

and time to home or merge all pairs in the pair set which Phase 2 of heuristics.

Results of SS heuristics show that SycnhroP finds sequences which have shorter lengths, that

is an expected results since it performs a deeper analysis because of the ϕ cost. Greedy, on the other

hand, is much more cheaper in terms of time but cannot find such short sequences. The difference

might look slight while experimenting with small number of states or large number of outputs but

when state sizes increase and number of outputs decreases, which means in fact when the shortest

A Study on Automata and Finite State Machines

SS length increases, difference between lengths of sequences found by SycnhroP and Greedy

becomes huge.

HS heuristics work faster than the SS heuristics since there is no need f a homing automaton.

Like in the SS heuristics, sequences found by SynchroP HS are shorter than the others. Fast HS selects

a random pair from active set of pairs where as Greedy HS selects the pair that has the shortest

homing word among others. Greedy HS generally selects pairs that stay in the level 1 of the

generated BFS forest, pairs that have homing words of length 1. For small state sizes Fast HS also

selects pairs which have merging word that has a length of 1 or 2. So in our experiments conducted

with 32 and 64 state sizes, Fast HS does not seem to be fast. But when the state size increases

(especially when the number of inputs is small), speed of Fast HS becomes apparent. Table 3 shows

the experiment that reveals the difference between speeds of Fast HS and Greedy HS.

Sorguç, Emek, Çirişci

References

[1] D. Eppstein. Reset sequences for monotonic automata. SIAM J. Comput., 19(3):500–510, 1990.

[2] Z. Kohavi. Switching and Finite Automata Theory. McGraw–Hill, New York, 1978.

[3] A. Roman. New algorithms for finding short reset sequences in synchronizing automata. In IEC

(Prague), pages 13–17, 2005.

A Study on Automata and Finite State Machines

