
Sabancı University Program for Undergraduate Research (PURE) Summer 2017-2018 

HOW DO MACHINE LEARNING ALGORITHMS WORK? 

 

Artun SARIOĞLU artunsarioglu@sabanciuniv.edu 
Computer Science, 2 

Evrim ÖZEL evrozel@gmail.com 
Computer Science, 4 

Onur Yigit ARPALI arpali.onur@metu.edu.tr 
Computer Science, 4 

Yusuf Umut ÇİFTÇİ uumutciftci@gmail.com 
Electrical and Electronics Engineering, 2  

Ziya ERKOÇ tellobjkziya@gmail.com 
Computer Science, 2 

Selim BALCISOY 
Computer Science 
 

 

Abstract 
We first became familiar with the concept and the implementation of decision trees, clustering and 
artificial neural network algorithms of machine learning. Then the visualization process of all three 
algorithms started. The Bokeh library is used for the visualization process of the algorithms. Interactive 
educative websites in Turkish have been developed by the group via d3.js. Later on, an experiment was 
conducted on non-professionals in order to control our progress and calculate our ability to transfer our 
knowledge. We have also contributed to open source with our visualization in Bokeh library. 
Keywords: visualization, machine learning, decision tree, k-means, neural networks, bokeh. 

1 Introduction  
Our research problem was to discover intuitive visualization techniques to explain a small set of 
popular machine learning algorithms to ordinary people, particularly high school students and 
firms who want to use these algorithms but lack the knowledge of how to use them. This meant 
that we needed to prepare our documentation in Turkish so that our audience would be able to 
learn the material easier.  
 
During our literature search, even though we found several visualization examples of advanced 
machine learning topics, the elementary and introductory concepts were very lacking in 
visualization. We only found websites that explained the material in by text, with few visuals. So 
we wanted to create a web app that focused on visuals first and explained the concepts later with 



SARIOĞLU, ÖZEL, ARPALI, ÇİTFÇİ, ERKOÇ 

minimal text usage. The usage of Turkish was very important too because the websites that we 
found were only in English, and hardly any Turkish machine learning introductions with visuals 
exist. 
 
We wanted to cover different categories of ML concepts, namely decision trees, clustering 
algorithms, and artificial neural networks. We found that on the internet, decision trees especially 
had almost no examples of this kind of visualization, but later discovered that research on tree 
visualization techniques (i.e. algorithms for node/edge positioning) had been done in the past 
(Buchheim, Junger & Leipert, 2002). So we decided to use these techniques in the context of 
decision trees and web visualization. The Bokeh library was used to visualize the tree structure 
since it allowed us to use embedded Python in our web app, which meant that implementing a 
pseudo-code algorithm was much intuitive. We used the ID3 algorithm (Quinlan, 1985) to 
implement the decision tree. 
 
For clustering, we found more examples compared to decision trees but they weren’t oriented 
towards ordinary people like we intended.  
 
Finally, for artificial neural networks, we found that material for this subject was a bit more 
extensive, with the most notable example being Tensorflow’s playground example 
(https://playground.tensorflow.org). We couldn’t find any Turkish resource for this topic, though, 
and we wanted to continue working with Bokeh library (which also didn’t have any ANN related 
examples), so we decided to make a bokeh module for this as well. We used Tensorflow’s Python 
library to implement the ANN algorithm. 
 
We used the D3.js library for visualization when Bokeh wasn’t enough for interaction with the 
user on browsers since D3.js is a javascript framework which is more flexible than Bokeh on the 
client side. 

2 Methodology  
 

2.1      Decision Tree 
 
2.1.1   Visualization 
 
After searching for visualization examples for decision trees, we couldn’t find any example to 
visualize decision trees so far. We started to explore different libraries to suit our purpose, and we 
decided on Bokeh library. First, it’s a Python library so we can code easily and avoid using 
javascript, which tends to be slower and not clear to debug. We used python on the server side, 
thus we avoided any performance issues since Python is more suitable for ML implementations. It 
has many libraries such as Numpy and Pandas to make matrix operations and data pre-processing 
easier. 
 

2 



HOW DO MACHINE LEARNING ALGORITHMS WORK? 

Bokeh’s website contained many different examples which are complex but creates basic figures 
so that visualization is less constrained. A particular example we found was a periodic table 
example, which appealed to us because it had a nice grid layout. Normally, these library is used 
for regular plots like histograms, line plots, bar plots etc. but this example uses the layout freely 
without depending on a single plot, and it used rectangle-shaped glyphs and text which we 
structured our decision tree application based on this example. 
 
After figuring out this example, we started to search for Bokeh data structures. Bokeh has its own 
data management objects which organize the data efficiently, eases the use of different utilities 
like tooltips for accessing data on the plot, it also updates the glyph data automatically so the 
programmer doesn’t have to re-draw the glyphs with each data modification and provides 
increased performance compared to regular data objects. 
 
We also focused on the decision tree algorithm itself. We decided to use ID3 decision trees which 
classifies mostly nominal data sets since these data sets tend to be more understandable to 
non-professionals. To give an example, we initially used a dataset that classifies cars according to 
seats, luggage area, safety index, price etc. (Dua & Taniskidou, 2017). Depending on these 
attributes, this dataset classifies the cars as acceptable or unacceptable. 
 
We first implemented the ID3 decision tree with 3 statistical methods which are information gain, 
gain ratio, Gini index to generate the tree. Basically, these methods decide which attribute should 
be used to divide the data set according to its attribute values. Information gain and gain ratio rely 
on the entropy concept. Entropy is a measurement of the complexity of the dataset’s distribution 
at certain points. But entropy is not enough on its own to split entire datasets. We need to 
compute the weighted average over all sets resulting from the split. At this point, we get 
“information” which is a different type of measurement. Subtracting the “information” from the 
entropy of the data set, we get information gain that we can use to generate all the tree. The gain 
ratio is calculated by dividing the information gain by intrinsic information, which is the entropy 
of the distribution of instances into branches. This gives us how much information we need to 
determine the branch of an instance. As we understand, gain ratio uses more information than the 
information gain so it has better performance to split the dataset into branches. In addition to 
these two statistical methods, we implemented a third statistical method which is Gini index. Gini 
index, basically, divides the instances according to its purities. The purity is an index to split the 
instances very similar to entropy. In the end, all these methods look so complicated to 
non-professionals. So we decided to just use Gini index in the decision tree. 
 
The ID3 decision tree which we describe above returns a data structure which describes the 
relation between nodes, Gini index values of every node and the leaf labels. As we mentioned in 
the first paragraph of this section, we use Bokeh layouts with basic glyphs. So we need to position 
these nodes on the layout to visualize the tree nicely. Positioning issues cropped up at this point. 
First, we tried to create our own positioning algorithm, but decision trees can differ a lot, so we 
needed to create an adaptable algorithm to cover all trees. Our algorithm worked fine actually: 
there was no collision between branches or nodes, but it didn’t look very good. Because we 

3 



SARIOĞLU, ÖZEL, ARPALI, ÇİTFÇİ, ERKOÇ 

couldn’t calculate the proportions between nodes, we made a literature search about this issue. 
We found different positioning algorithms. The first algorithm we found was the 
Reingold-Tilford drawing algorithm (Reingold & Tilford, 1981). This algorithm is considered the 
basis of the drawing algorithm that we found and used. After the creation of this algorithm, John 
Walker improved this algorithm and created his own positioning algorithm for general trees 
(Walker, 1990). After searching for more literature, we finally found a brand-new positioning 
algorithm  (Buchheim et al. 2002). It draws the rooted tree in linear time so it has a much better 
performance and it can work better with our server, which we will mention in the next section. 

 
Figure 1: Decision tree visualization with Bokeh 

 
Continuing with the tree visualization, we added several tools to the tree application to make the 
visualization more intuitive. The user can add or remove different attributes from the tree to make 
the tree more detailed or simple, or they can change the root node to create a different tree and see 
the difference in accuracy or Gini values of the nodes depending on the changes. The user can 
compare the newly created tree and the ideal tree that the decision tree algorithm computes and 
see how changing properties of the tree changes accuracy. The ability to add new datasets to the 
web app was added, so users can use the web app to visualize different datasets. The layout of the 
widgets and plot was designed for adaptability so it works the same with different computers with 
different screen sizes. The user can choose to show or hide edge and leaf labels depending on if 
they want an uncluttered view. After finishing this example, we polished the visuals and decided 
to send this part of the project as a contribution to Bokeh’s examples. 
 
 
2.1.2 Interactive and Educative Web-Apps 
 

4 



HOW DO MACHINE LEARNING ALGORITHMS WORK? 

Apart from visualizing the decision tree algorithm, we created interactive web-pages helping 
people to learn core concepts of decision tree including entropy and classification. We used 
interesting examples to explain how decision tree actually works.  
 
Firstly, we used the melon and watermelon analogy to explain the logic of classification. In the 
watermelon-melon example, we listed the watermelon and melons based on their radii and put the 
ones with the same size in the same column. The objective here is to find a radius that best 
separates watermelon and melon. In the figure below, the split point is set to 11 cm. Model 
creation process in Machine Learning is called training which resembles the learning process of a 
human.  
 
 

 
Figure 2: Training our model 

 
In that setting, our model will classify fruits having a radius greater than 11 cm as watermelon, 
otherwise; melon. As watermelon and melon can be similar in size, there might be some error or 
wrong-classification in the model. In Machine Learning, one of the measurements to explain the 
model performance is called accuracy. Accuracy is basically the ratio of correct guesses divided 
by the total number of guesses. Having completed the training phase, test phase begins. In the test 
phase, model encounters with different data and tries to apply its assumption here. In the below 
figure, the model just created which determines split point as 11 cm, is tested. The accuracy of 
this case happens to be 94%. Eventually, with this example, we aimed to explain how 
classification works which is the root of the decision tree algorithm. 
 
 

5 



SARIOĞLU, ÖZEL, ARPALI, ÇİTFÇİ, ERKOÇ 

 
Figure 3: Testing the model 

 
In our second example, we explain the concept of entropy. Entropy is basically the measurement 
of impurity. In other words, it measures how far our data is from being homogeneous. To draw 
attention, we used Game of Thrones characters. Each row represents a character in the series and 
each column represents one of the features of the characters. These features include ‘wealth’, 
‘dragon ownership’, ‘demand for the throne’, ‘hair color’. The first column is the name of the 
character and as it is unique it is not a feature. The last column represents the house where a 
character is from. Each house has its own color assigned by us and can be seen as a border around 
the image of characters. The main problem emphasized in this example is to predict the house of 
the character by using his/her features. This problem is not solved in this example but how the 
decision tree algorithm approaches this problem is explained. The main task in this example is to 
separate characters into yes and no pools with respect to a feature by asking a question. The 
characters then will go to the respective pool based on his/her wealth. Measurement of the 
impurity as mentioned before is called entropy. In our example, we describe the entropy as the 
darkness of the water. As each color represents a house, if, for example, one pool contains 
characters from each house this pool would be very impure, therefore; entropy would be quite 
high. However, if all characters from the same house were to gather in a pool, this would mean 
low impurity, thus; high entropy. Therefore, Question selection is important, as different 
questions may affect the distribution of the characters. One possible question would be “Is the 
character rich?”. In this example, there are two ways to do the separation. One can select 
previously one of the determined questions which are located on the left of the page. After the 
selection, separation process then will visually and automatically continue. One can also create 
his/her own question. Having determined a general question in his/her mind, for each character 
one can click yes and no buttons above the pools to separate characters into two pools.  

6 



HOW DO MACHINE LEARNING ALGORITHMS WORK? 

 
Figure 4: Game of Thrones example overview 

 
An example separation could be seen in the below figure in which characters are separated after 
asking the question of “Is the character rich?”. This created 0.81 and 1.75 entropy respectively for 
yes and no pools. The weighted average entropy is 1.46. It is calculated by where14

0.81  4 + 1.75  10* *  
4 and 10 are the number of characters in the yes and no pools respectively. 

 
Figure 5: Characters separated 

 
As a result, in this example, we aimed to explain the concept of entropy with an example from 
popular culture. 
 
Our last example in the decision tree is about graphs. We aimed to introduce people to data 
analysis and actually let them see how the decision tree algorithm perceives the data. Lens dataset 

7 



SARIOĞLU, ÖZEL, ARPALI, ÇİTFÇİ, ERKOÇ 

is used in this example in which there exist features including age, spectacle prescription, 
astigmatic, tear production rate. Each entry in the dataset represents a patient and along with 
feature, it includes a decision column determining if that patient could use soft lenses, hard lenses 
or no lenses at all. Below figure shows our example. Columns are features while rows are the 
decisions that are just mentioned. We wanted people to actually find a relationship between 
features and the decision thereby doing some generalizations such as people with low tear 
production rate (rightmost column) cannot wear lenses which is actually the way roughly how 
decision tree works.  
 
 

 
Figure 6: Charts example overview 

 
Thus, we tried to make people think in a way that the algorithm thinks. 

2.2 K-Means Algorithm 
 
2.2.1 Visualization 

 
2.2.2 Interactive and Educative Web-Apps 
 

K-Means algorithm is developed to solve clustering problems. Simply put, clustering is            
gathering the objects with similar features together. One natural clustering problem may occur             
when a lot of people orders a food, say, pizza. The restaurant manager should share the orders                 
among couriers almost evenly so that customers do not get angry. Below is a screenshot from our                 
example. We used a Barcelona neighborhood as a place due to its interesting urban planning.               
Each person represents an order and people located in the upper-right of the screen are the                
couriers. 
 

8 



HOW DO MACHINE LEARNING ALGORITHMS WORK? 

 
Figure 7: Pizza order example overview 

 
We implemented a basic version of K-Means algorithms. Firstly, one moves each courier into the 
neighborhood. Then, each customer is assigned to the courier close to himself/herself. After that, 
courier goes into the middle of the customers assigned to him/her. Finally, as the position of the 
courier is changed, new customers may be assigned to him/her again. This process continues until 
almost no more customer switches his/her courier. This is basically how K-Means works. We also 
gave the user the ability to add and remove couriers to test the algorithm interactively. 

 

 
Figure 8: Customers clustered by couriers 

 
As a result, in this example, we aimed to explain the classification problem and how it can be 
solved by the K-Means algorithm. 

 

9 



SARIOĞLU, ÖZEL, ARPALI, ÇİTFÇİ, ERKOÇ 

 
 
2.3 Artificial Neural Networks 
 
2.3.1 Visualization 
 
Lastly, we focused on visualizing Artificial Neural Networks (ANNs). As we did in the previous 
algorithms, we searched different libraries and examples for the most suitable methods to use. We 
had two options: scikit-learn, which is a generalized ML algorithms library. It doesn’t contain just 
contain ANN algorithms, it comes with many different classification and clustering algorithms. 
But in this example, we decided to go with the second option, which is Tensorflow, a specialized 
library designed by Google for neural networks. We also thought that this was a good chance to 
learn a new framework in this project. Tensorflow already has built-in methods for constructing 
the ANN and it also gives us a lot of flexibility to optimize our ANN structure such as epoch 
numbers, activation functions, number of layers/nodes, learning rate, learning decay, optimizers 
(stochastic gradient descent and Adam optimizers) and different loss functions. Also, we get 
different results easily like accuracy, precision, recall, specificity.  

Figure 9: Artificial neural network visualization with Bokeh 
 

 

10 



HOW DO MACHINE LEARNING ALGORITHMS WORK? 

We decided to use Bokeh again for the layout of the plot and to get user input. The user can select 
different combinations of settings and see how the loss and accuracy graphs are affected by 
choosing a particular tab. The web app gets the user input values and sends them to the ANN 
library. Since the computation takes a while, a progress bar was added with textual info so the 
user knows that they have to wait. 
 
To visualize our ANN, we chose the famous MNIST dataset (LeCun, Bottou, Bengio, Haffner, 
1998) which contains images of handwritten digits, because it was suitable for classification. In 
this visualization, we allow users to set epoch numbers, activation functions, number of layers 
and nodes in each layer and learning rate. Users can understand the effects of different settings. 
For example, when the user sets the learning rate too low and makes the ANN structure too 
simple, it can be observed that these settings are not enough to classify images successfully. The 
user can see that with a low learning rate the system can get stuck on the local minima by 
observing our loss/accuracy graphs that we give to the user. Also with these graphs, the user can 
observe different results like when the model is converging. 
 
 
2.3.2 Interactive and Educative Web-Apps 

 
Artificial neural network (ANN) is a classification problem just as decision tree that simply tries               
to do prediction, for example, predicting the name of the animal, based on what it learned. In                 
ANN, there is a complex network between input (features) and the outputs (decision). This              
network consists of bonds each of which has its own weight (or power) to alter the output                 
(decision). In our example, we oversimplified theses bonds and the network as a knob. Change in                
the value of the knob gives the sense of change in the weights of the bonds. We used animal                   
classification problem particularly classifying dogs and cats. User, in this example, will try to              
match the animal label with the image. At first, the user will only be see a single knob with 4                    
switched which naturally will only create 4 possibilities. After that, he/she will realize that with 4                
possibility it is very hard to find a setting to match all animals with its label. Then, he/she will be                    
shown the second knob which will increase the number of combinations to 16 and in that way                 
he/she will be able to find a setting so that all animals are successfully paired with its label. 

 

11 



SARIOĞLU, ÖZEL, ARPALI, ÇİTFÇİ, ERKOÇ 

 
Figure 10: Artifical Neural Network example overview 

As a result, we aimed to explain the how the neural network algorithm works. 
 
3 Experiment 
 

After designing and implementing the decision tree, we conducted a simple experiment 
on a small group of high school students to see if it's an effective method to learn these ML 
concepts. We prepared a set of questions for each module of the decision tree part to measure the 
understandability. As we describe these decision tree modules above, we first showed the students 
diagrams of our data according to its different attributes so we tried to give the students a sense of 
the data that we are working with. For example, we used the lens dataset (Dua et al. 2017) which 
classifies patients according to lens type usage depending on attributes such as age, tear 
production etc. because we thought that it would be an interesting topic to discuss and easier for 
them to learn about the modules. 
 

According to our feedbacks of the students, we improved and re-designed some 
properties of the modules and we implemented future parts of the project considering these 
feedbacks. 
 
 
4 Conclusion 
Feedbacks from non-professionals formed the last version of our interactive and educative 
website. These were accurate because the experiment was interactive. Therefore, our website also 
became interactive. In feedbacks, non-professionals stated they could digest the concepts of the 
ML algorithms well. We are in the last stage of contribution to the Bokeh library. Hopefully, our 
decision tree visualizer will be published on Bokeh’s website. As a result, we produced a 
beneficial website in Turkish for those who are not familiar with Computer Science or ML to 
understand the concepts of ML algorithms. 
 

12 



HOW DO MACHINE LEARNING ALGORITHMS WORK? 

 
 

References 
 
Buchheim C., Jünger M., Leipert S. (2002) Improving Walker’s Algorithm to Run in Linear              
Time. In: Goodrich M.T., Kobourov S.G. (eds) Graph Drawing. GD 2002. Lecture Notes in              
Computer Science, vol 2528. Springer, Berlin, Heidelberg 
 
Dua, D. and Karra Taniskidou, E. (2017). UCI Machine Learning Repository           
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and          
Computer Science. 
 
Quinlan, J.R. (1985). Induction of Decision Trees. Boston, MA: Kluwer Academic Publishers 
 
Reingold, E.M., & Tilford, J.S. (1981). Tidier drawings of trees. IEEE Transactions on Software              
Engineering, Vol. SE-7, No. 2 
 
Walker, J.Q. (1990). A Node-Positioning Algorithm for General Trees. Softw: Pract. Exper., 20:             
685-705. doi:10.1002/spe.4380200705 
 
 
 
 
 
 
 
 

13 


