
Sabancı University Program for Undergraduate Research (PURE) Summer 2017-2018

Sequential Testing with Precedence Constraints

Duygu Ay duyguay@sabanciuniv.edu
Industrial Engineering Graduated

Cankut Coşkun cankutcoskun@sabanciuniv.edu
Computer Science, Sophomore

Project Supervisor: Tonguç Ünlüyurt

Industrial Engineering

Abstract
We consider the problem of minimum cost sequential testing (diagnosis) of a series (or parallel)

system under precedence constraints. The model of the problem is a nonlinear integer program. We

develop two different approach to solve the problem. Firstly, we develop and implement a Simulated

Annealing algorithm for the problem. And, we compare the performance of the Simulated Annealing

algorithm with optimal solutions. The simulated annealing algorithm is particularly effective as the

problem size gets larger. Secondly, we develop a General Tree Type data search algorithm which

finds and sorts all feasible permutations under precedence constraints in order to find the cost

minimizing solution.

Keywords: Metaheuristic; Simulated Annealing; Tree Data Structure; Sequential Testing.

1 Introduction

In many practical situations, the problem occurs in testing a complex system through a series

of its components. In many of these cases, testing a component is costly (it may cost money, take

time, or incur pain on the patient, etc.), and therefore it is important to determine a best algorithm

that minimizes the average cost of testing in the long run. More precisely, the sequential test

problem requires that a system consisting of a series of components be correctly ordered as having

the expected minimum cost.

Metaheuristics are strategies that guide the search process to provide a sufficiently good

solution to an optimization problem, especially for big data. The sequential test problem requires a

metaheuristic method for efficiency concern. According to previous researches, an ant colony

algorithm is developed and implemented for the sequential testing problem of a series system under

precedence constraints. This algorithm for special type of instances found optimal solutions in

polynomial time. The ant colony algorithm is particularly effective as the problem size gets larger

(Çatay, Özlük & Ünlüyurt, 2011).

In this particular study, we propose a simulated annealing algorithm which is one of the

metaheuristic methods for the sequential testing problem of a series system under precedence

constraints. We demonstrate the effectiveness of the proposed algorithm through average

optimality gap calculations. Also, we propose a general tree type data search algorithm which

enumerates all feasible permutations under precedence constraints.

AY, COŞKUN

 2

2 Problem Definition

We consider a simple series system. Simple series system where the system functions if all the

individual components function. We would like to find out if all components function or as having

the expected minimum cost. The individual components can be in a working or failure state, and

these components are independent of each other. We have two type parameters: First one is whether

learning the state of individual components is costly (𝑐𝑖), Second one is 𝑃𝑖, probability that

component i functions. We continue testing components one by one until a failing component is

found or all components are tested.

The strategy corresponds to a permutation of the components.

For a permutation π the expected cost is:

 cπ(1)+ pπ(1) cπ(2)+ pπ(1) pπ(2) cπ(3)+ …..+ pπ(1) pπ(2) …pπ(n-1) cπ(n)

All permutations are not feasible due to physical/logical etc. reasons. These reasons can be

described as precedence constraints. These constraints are described by an acyclic directed graph,

where arc (i, j) means j can be tested only if i is tested before j. So, the problem is to find a feasible

permutation with the minimum expected cost.

Figure 1: Acyclic Directed Graph

A possible solution:

1-3-2-5-7-4-8-6

Cost minimizing function:

SEQUENTIAL TESTING WITH PRECEDENCE CONSTRAINTS

 3

Figure 2: A possible path for the given graph in Figure 1

In this project, we aim to find the best permutation (the minimum cost) among all feasible

permutations which satisfies the precedence constraints. We develop two different approach to

solve this question: Our project consists of two part. Firstly, we develop a faster heuristic algorithm

by using simulated annealing for efficiency concerns for the problem of sequential testing.

Secondly, in order to find the cost minimizing permutation for the problem, enumeration of all

possible solutions is developed by using a tree data structure.

3 A Faster Heuristic Algorithm by Using Simulated Annealing

Simulated annealing is a method for finding a good (not necessarily perfect) solution to an

optimization problem. It accepts worse neighbors in order to avoid getting stuck in local optima; It

can find the global optimum if run for a long enough amount of time. The problem of sequential

testing with precedence constraints is a good example: we are looking to visit all components

sequentially by looking precedence constraints in order to minimize the total expected cost. As the

size of components gets larger, it becomes too computationally intensive to check every possible

sequence. At that point, we need an algorithm.

AY, COŞKUN

 4

Figure 3: Simulated Annealing Algorithm Graph

For our project, we implement Simulated Annealing algorithm in R programming language. In the

implementation, we have three function: Simulated annealing (simulated_annealing), Generate a

neighbor sequence (genNeighSeq) and Calculating the cost of sequence (mincost). The key part is

to generate a neighbor sequence. This function is recursive. It takes a feasible initial sequence,

swaps two random consecutive points which have not a precedence relation and creates a new

feasible sequence. We found good solutions close the global optimum at 100 iteration. The

algorithm reads 450 txt files (our data) and writes the results in a excel file.

SEQUENTIAL TESTING WITH PRECEDENCE CONSTRAINTS

 5

Figure 4: The Implementation of Simulated Annealing Algorithm

After the implementation, we change simulated annealing parameters that are temperature and

iteration number. We compare the results. Then, we take the optimality gap with optimal solutions

for each 450 data and take the average optimality gap for each parameter in R. Then, we write

results in a excel file. We realized that as iteration number increases, the results are closer to optimal

solutions, but there is no significant change with temperature factor. Tables at the bottom shows

the average optimality gap. Iteration numbers are 200 vs 100 from top to bottom.

Figure 5: Tables of Average Optimality gap with Simulated Annealing Parameters for each

Data size

AY, COŞKUN

 6

4 Enumeration of All Possible Solutions Using a Tree

We develop an enumeration algorithm which finds and sorts all feasible permutations under

precedence constraints in order to find the cost minimizing solution. Since not all permutations are

feasible under precedence constraints the first main objective of our algorithm is the enumeration

of all feasible permutations.

We build a General Tree Type data search algorithm. Each tree starts with a root which does not

have any precedence constraint and add all possible members of the next generation. Thus, the

second level of the tree is created. Each second-generation child adds its own children and create

the third level. It goes on like this until the 𝑁𝑡ℎ generation. The 𝑁𝑡ℎ generation is called as leaves

of the tree. Each leaf is a possible solution which follows a unique path.

Figure 6: Tree Structure

Figure 7: The Adjacency Matrix of the Graph in the Figure 1

When a column of the matrix consists of all zeroes, that column is the root of a tree. After

chosen root we extract the column and the row belongs to that component. Simply we are extracting

Minor (𝑀𝑖×𝑖) of that component. All zero columns of minor will give us children for next

generation. Until the minor becomes 1 x 1 matrix algorithm keep on extracting and adding new

generations. When it reaches to end genetic info of leaves keeps a unique solution.

SEQUENTIAL TESTING WITH PRECEDENCE CONSTRAINTS

 7

Figure 8: Step 1 of the Constructed Algorithm

All zeroes columns are 2, 3, 7. Therefore, there are 3 children of the root 1. There can be

sequences start with 1-2, 1-3, 1-7. At this stage the leftmost child is 1-2. The algorithm keeps on

searching until the first leaf by looking the leftmost child. When the algorithm reaches the leftmost

leaf, then it starts to search for a right sibling until there is no right sibling left. It moves parent

node and same process repeats for the possible children 3, 5, 7.

Genetic info: 1-2

Possible children: 3, 5, 7

Figure 9: Step 2 of the Constructed Algorithm

Genetic info: 1-2-3

Possible children: 4, 5, 7

Figure 10: Step 3 of the Constructed Algorithm

AY, COŞKUN

 8

Genetic info: 1-2-3-4

Possible children: 5, 7

Figure 11: Step 4 of the Constructed Algorithm

Genetic info: 1-2-3-4-5

Possible children: 6, 7

Figure 12: Step 5 of the Constructed Algorithm

Building an example with 5 components:

Figure 13: Acyclic Directed Graph and Adjacency Matrix of an Example Sequence

SEQUENTIAL TESTING WITH PRECEDENCE CONSTRAINTS

 9

Figure 14: Example Results of the Constructed Algorithm

Implementation is done by using programming language C++. Simple series system data is

given as an adjacency matrix of a directed graph which also includes probability and the cost of

testing. To represent a component a data aggregator is implemented. GTreeNode struct includes

following data:

1- The id of the component,

2- Genetic info from previous generations that keeps the path passed through.

3- An unsigned integer variable keeps the generation number of the current node.

4- A node pointer points to parent node to move previous generation.

5- Second pointer points to the leftmost child to create a new generation.

6- The third one points to the right sibling.

7- A matrix data to find children of the next generation. Matrix is derived from the original

adjacency matrix according to chosen component. Matrix is implemented in the integer type vector

of vectors.

AY, COŞKUN

 10

Figure 15: The Implementation of Enumeration Algorithm

5 Conclusion and Future Work

We realized that as iteration number increases, the results are closer to optimal solutions, but there

is no significant change with temperature factor for simulated annealing heuristic algorithm.

Simulated annealing is a metaheuristic method. Future work can be on metaheuristic. Better results

can be found with other metaheuristic methods.

Implementation of the enumeration algorithm has not finished yet. Total cost of each leaf will be

calculated and stored in a container data type. After enumeration succeeds Search for the minimum

algorithm will find the feasible solution with minimum cost.

SEQUENTIAL TESTING WITH PRECEDENCE CONSTRAINTS

 11

References

Çatay, B., Özlük, Ö., Ünlüyurt, T. (2011). TestAnt: An ant colony system approach to sequential

testing under precedence constraints. Expert Systems with Applications, 38 (12), 14945-14951.

doi: 10.1016/j.eswa.2011.05.053.

